The effect of forest disturbances and regeneration scenario on soil organic carbon pools and fluxes: a review

Marcin Pietrzykowski , Bartłomiej Świątek , Bartłomiej Woś , Anna Klamerus-Iwan , Paweł Mąsior , Marek Pająk , Piotr Gruba , Justyna Likus-Cieślik , Jan Tabor , Marek Ksepko , Marcin Chodak

Journal of Forestry Research ›› 2024, Vol. 36 ›› Issue (1) : 12

PDF
Journal of Forestry Research ›› 2024, Vol. 36 ›› Issue (1) : 12 DOI: 10.1007/s11676-024-01807-6
Review Article

The effect of forest disturbances and regeneration scenario on soil organic carbon pools and fluxes: a review

Author information +
History +
PDF

Abstract

Forest ecosystems are one of the largest terrestrial carbon (C) reservoirs on Earth and an important sink of anthropogenic CO2 emissions. Abiotic and biotic disturbances such as windfalls, fires, outbreaks of insects or pests may negatively affect C storage in forest ecosystems decreasing their role as CO2 sink. The objective of this review was to summarize the current knowledge on the impact of large-scale forest ecosystem disturbances caused by windthrow and insect outbreaks on soil C stocks and cycles, and to gather information on the impact of restoration treatments performed in disturbed stands in the context of carbon accumulation in forest soils. Discussed were effects of windstorms and insect outbreaks as well as impacts of various approaches of forest regeneration after disturbance on C stocks and fluxes. Disturbances decrease C stocks in forest ecosystems and turn them from C sink into C source for a certain time. Regeneration of the disturbed forest restores its role as a CO2 sink. In montane forests artificial afforestation seems to shorten the time of achieving C parity. However, no data exists for lowland forests. Hence, there is an urgent need for studies that assess effect of windfalls and insect outbreaks on carbon storage in forests of lowland Europe.

Cite this article

Download citation ▾
Marcin Pietrzykowski, Bartłomiej Świątek, Bartłomiej Woś, Anna Klamerus-Iwan, Paweł Mąsior, Marek Pająk, Piotr Gruba, Justyna Likus-Cieślik, Jan Tabor, Marek Ksepko, Marcin Chodak. The effect of forest disturbances and regeneration scenario on soil organic carbon pools and fluxes: a review. Journal of Forestry Research, 2024, 36(1): 12 DOI:10.1007/s11676-024-01807-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AveraBN, RhoadesCC, CalderόnF, CotrufoMF. Soil C storage following salvage logging and residue management in bark beetle-infested lodgepole pine forests. For Ecol Manag, 2020, 472 118251

[2]

BalesdentJ. The significance of organic separates to carbon dynamics and its modelling in some cultivated soils. Eur J Soil Sci, 1996, 47(4): 485-493

[3]

BalonJ, MaciejowskiW. Wpływ huraganowego wiatru z dnia 19 listopada 2004 na krajobraz południowego skłonu Tatr. Problemy Ekologii Krajobrazu, 2005, 17: 92-100

[4]

BiederbeckVO, JanzenHH, CampbellCA, ZentnerRP. Labile soil organic matter as influenced by cropping practices in an arid environment. Soil Biol Biochem, 1994, 26(12): 1647-1656

[5]

BradfordJB, FraverS, MiloAM, D’AmatoAW, PalikB, ShinnemanDJ. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks. For Ecol Manag, 2012, 267: 209-214

[6]

BremerE, JanzenHH, JohnstonAM. Sensitivity of total, light fraction and mineralizable organic matter to management practices in a Lethbridge soil. Can J Soil Sci, 1994, 74(2): 131-138

[7]

BrzezieckiB, AndrzejczykT, ŻyburaH. Natural regeneration of trees in the Bialowieza Forest. Sylwan, 2018, 162(11): 883-896

[8]

BrzezieckiB, CiurzyckiW, KeczyńskiA. Changes of herb layer vegetation during the period 1959–2016 on the permanent study plot in the compartment 319 of Białowieża National Park. Sylwan, 2018, 162(12): 980-988

[9]

CampbellJL, SunOJ, LawBE. Disturbance and net ecosystem production across three climatically distinct forest landscapes. Glob Biogeochem Cycles, 2004, 18(4): GB4017

[10]

ChristophelD, HöllerlS, PrietzelJ, SteffensM. Long-term development of soil organic carbon and nitrogen stocks after shelterwood- and clear-cutting in a mountain forest in the Bavarian Limestone Alps. Eur J for Res, 2015, 134(4): 623-640

[11]

ColemanDC, ElliottET. Let the soil work for us. Ecol Bull, 1988, 39: 23-32

[12]

DalalRC, MayerRJ. Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. III. Distribution and kinetics of soil organic carbon in particle size fractions. Soil Res, 1986, 24(2): 293

[13]

DmyterkoE, BruchwaldA. Assessment of the damage to Polish forests caused by a hurricane in August 2017. Sylwan, 2020, 164(5): 355-364

[14]

DoborL, HlásnyT, RammerW, ZimováS, BarkaI, SeidlR. Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks?. J Appl Ecol, 2020, 57(1): 67-76

[15]

DonA, BärwolffM, KalbitzK, AndruschkewitschR, JungkunstHF, SchulzeED. No rapid soil carbon loss after a windthrow event in the High Tatra. For Ecol Manag, 2012, 276: 239-246

[16]

dos SantosLT, Magnabosco MarraD, TrumboreS, de CamargoPB, Negrón-JuárezRI, LimaAJN, RibeiroGHPM, dos SantosJ, HiguchiN. Windthrows increase soil carbon stocks in a central Amazon forest. Biogeosciences, 2016, 13(4): 1299-1308

[17]

EdburgSL, HickeJA, LawrenceDM, ThorntonPE. Simulating coupled carbon and nitrogen dynamics following mountain pine beetle outbreaks in the western United States. J Geophys Res, 2011, 116(G4): G04033

[18]

FAO. Global forest resources assessment 2020: main report, 2020 Rome FAO 184

[19]

FellerC, BeareMH. Physical control of soil organic matter dynamics in the tropics. Geoderma, 1997, 79(1–4): 69-116

[20]

GardinerB, BerryP, MouliaB. Review: wind impacts on plant growth, mechanics and damage. Plant Sci, 2016, 245: 94-118

[21]

Gardiner B, Blennow K, Carnus JM, Fleischer M, Ingemarson F, Landmann G, Lindner M, Marzano M, Nicoll B, Orazio C, Peyron JL, Reviron MP, Schelhaas MJ, Schuck A, Spielmann M, Usbeck T (2010) Destructive storms in European forests: past and forthcoming impacts. Final report to DG Environment (07.0307/2009/SI2.540092/ETU/B.1)

[22]

GavrikovVL, SharafutdinovRA, KnorreAA, PakharkovaNV, ShabalinaOM, BezkorovaynayaIN, BorisovaIV, ErunovaMG, KhleboprosRG. How much carbon can the Siberian boreal taiga store: a case study of partitioning among the above-ground and soil pools. J for Res, 2016, 27(4): 907-912

[23]

GrelleA, HedwallPO, StrömgrenM, HåkanssonC, BerghJ. From source to sink–recovery of the carbon balance in young forests. Agric for Meteor, 2023, 330 109290

[24]

GrubaP, SochaJ, BłońskaE, LasotaJ. Effect of variable soil texture, metal saturation of soil organic matter (SOM) and tree species composition on spatial distribution of SOM in forest soils in Poland. Sci Total Environ, 2015, 521: 90-100

[25]

GuggenbergerG, FreySD, SixJ, PaustianK, ElliottET. Bacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems. Soil Sci Soc Am J, 1999, 63(5): 1188-1198

[26]

HansenEM. Forest development and carbon dynamics after mountain pine beetle outbreaks. For Sci, 2014, 60(3): 476-488

[27]

HassinkJ. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil, 1997, 191(1): 77-87

[28]

HealeySP, RaymondCL, LockmanIB, HernandezAJ, GarrardC, HuangCQ. Root disease can rival fire and harvest in reducing forest carbon storage. Ecosphere, 2016, 7(11) e01569

[29]

HickeJA, AllenCD, DesaiAR, DietzeMC, HallRJ, Ted HoggEH, KashianDM, MooreD, RaffaKF, SturrockRN, VogelmannJ. Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob Change Biol, 2012, 18(1): 7-34

[30]

HottaW, MorimotoJ, InoueT, SuzukiSN, UmebayashiT, OwariT, ShibataH, IshibashiS, HaraT, NakamuraF. Recovery and allocation of carbon stocks in boreal forests 64 years after catastrophic windthrow and salvage logging in northern Japan. For Ecol Manag, 2020, 468 118169

[31]

HryniewickaA, MandziukA. Economic consequences of the 2016 storm in the Supraśl Forest District. Sylwan, 2020, 164(4): 321-330

[32]

HurteauMD. LetcherTM. The role of forests in the carbon cycle and in climate change. Climate change, 2021 Amsterdam Elsevier 561-579

[33]

HyvönenR, ÅgrenGI, DaliasP. Analysing temperature response of decomposition of organic matter. Glob Change Biol, 2005, 11(5): 770-778

[34]

JactelH, KorichevaJ, CastagneyrolB. Responses of forest insect pests to climate change: not so simple. Curr Opin Insect Sci, 2019, 35: 103-108

[35]

JandlR, VesterdalL, OlssonM, BensO, BadeckF, RocJ. Carbon sequestration and forest management. CAB Rev, 2007, 2: 017

[36]

JanzenHH, CampbellCA, BrandtSA, LafondGP, Townley-SmithL. Light-fraction organic matter in soils from long-term crop rotations. Soil Sci Soc Am J, 1992, 56(6): 1799-1806

[37]

JenkinsJC, AberJD, CanhamCD. Hemlock woolly adelgid impacts on community structure and N cycling rates in eastern hemlock forests. Can J for Res, 1999, 29(5): 630-645

[38]

JohnsonDW. Effects of forest management on soil carbon storage. Water Air Soil Pollut, 1992, 64(1): 83-120

[39]

JohnsonDW, CurtisPS. Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag, 2001, 140(2–3): 227-238

[40]

KillhamK, AmatoM, LaddJN. Effect of substrate location in soil and soil pore-water regime on carbon turnover. Soil Biol Biochem, 1993, 25(1): 57-62

[41]

KizlinskiML, OrwigDA, CobbRC, FosterDR. Direct and indirect ecosystem consequences of an invasive pest on forests dominated by eastern hemlock. J Biogeogr, 2002, 29(10–11): 1489-1503

[42]

KlutschJG, NegrónJF, CostelloSL, RhoadesCC, WestDR, PoppJ, CaissieR. Stand characteristics and downed woody debris accumulations associated with a mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in Colorado. For Ecol Manag, 2009, 258(5): 641-649

[43]

KöhlM, LinserS, PrinsK. State of Europe’s forests 2020, 2020 Bonn Forest Europe

[44]

KösterK, PüttseppÜ, PumpanenJ. Comparison of soil CO2 flux between uncleared and cleared windthrow areas in Estonia and Latvia. For Ecol Manag, 2011, 262(2): 65-70

[45]

KosunenM, PeltoniemiK, PennanenT, Lyytikäinen-SaarenmaaP, AdamczykB, FritzeH, ZhouX, StarrM. Storm and Ips typographus disturbance effects on carbon stocks, humus layer carbon fractions and microbial community composition in boreal Picea abies stands. Soil Biol Biochem, 2020, 148 107853

[46]

KramerMG, SollinsP, SlettenRS. Soil carbon dynamics across a windthrow disturbance sequence in southeast Alaska. Ecology, 2004, 85(8): 2230-2244

[47]

KurzWA, AppsMJ. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl, 1999, 9(2): 526-547

[48]

KurzWA, DymondCC, StinsonG, RampleyGJ, NeilsonET, CarrollAL, EbataT, SafranyikL. Mountain pine beetle and forest carbon feedback to climate change. Nature, 2008, 452: 987-990

[49]

LalR. Forest soils and carbon sequestration. For Ecol Manag, 2005, 220(1–3): 242-258

[50]

LangKD, SchulteLA, GuntenspergenGR. Windthrow and salvage logging in an old-growth hemlock-northern hardwoods forest. For Ecol Manag, 2009, 259(1): 56-64

[51]

LeverkusAB, GustafssonL, LindenmayerDB, CastroJ, Rey BenayasJM, RaniusT, ThornS. Salvage logging effects on regulating ecosystem services and fuel loads. Front Ecol Environ, 2020, 18(7): 391-400

[52]

LindrothA, LagergrenF, GrelleA, KlemedtssonL, LangvallO, WeslienP, TuulikJ. Storms can cause Europe-wide reduction in forest carbon sink. Glob Change Biol, 2009, 15(2): 346-355

[53]

MatthewsB, MayerM, KatzensteinerK, GodboldDL, SchumeH. Turbulent energy and carbon dioxide exchange along an early-successional windthrow chronosequence in the European Alps. Agric for Meteor, 2017, 232: 576-594

[54]

MayerM, SandénH, RewaldB, GodboldDL, KatzensteinerK. Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem. Funct Ecol, 2017, 31(5): 1163-1172

[55]

MayerM, PrescottCE, AbakerWEA, AugustoL, CécillonL, FerreiraGWD, JamesJ, JandlR, KatzensteinerK, LaclauJP, LaganièreJ, NouvellonY, ParéD, StanturfJA, VanguelovaEI, VesterdalL. Tamm review: influence of forest management activities on soil organic carbon stocks: a knowledge synthesis. For Ecol Manag, 2020, 466 118127

[56]

MayerM, RuschS, DidionM, BaltensweilerA, WalthertL, RanftF, RiglingA, ZimmermannS, HagedornF. Elevation dependent response of soil organic carbon stocks to forest windthrow. Sci Total Environ, 2023, 857(Pt 3) 159694

[57]

MiścickiS. Changes in the stands of the Białowieża National Park from 2000 to 2015. Leśne Prace Badawcze, 2016, 77(4): 371-379

[58]

MoLD, ZohnerCM, ReichPB, LiangJJ, de MiguelS, NabuursGJ, RennerSS, van den HoogenJ, ArazaA, HeroldM, MirzagholiL, MaHZ, AverillC, PhillipsOL, GamarraJGP, HordijkI, RouthD, AbeggM, Adou YaoYC, AlbertiG, Almeyda ZambranoAM, AlvaradoBV, Alvarez-DávilaE, Alvarez-LoayzaP, AlvesLF, AmaralI, AmmerC, Antón-FernándezC, Araujo-MurakamiA, ArroyoL, AvitabileV, AymardGA, BakerTR, BałazyR, BankiO, BarrosoJG, BastianML, BastinJF, BirigazziL, BirnbaumP, BitarihoR, BoeckxP, BongersF, BouriaudO, BrancalionPHS, BrandlS, BrearleyFQ, BrienenR, BroadbentEN, BruelheideH, BussottiF, Cazzolla GattiR, CésarRG, CesljarG, ChazdonRL, ChenHYH, ChisholmC, ChoH, CiencialaE, ClarkC, ClarkD, CollettaGD, CoomesDA, Cornejo ValverdeF, Corral-RivasJJ, CrimPM, CummingJR, DayanandanS, de GasperAL, DecuyperM, DerroireG, DeVriesB, DjordjevicI, DolezalJ, DourdainA, Engone ObiangNL, EnquistBJ, EyreTJ, FandohanAB, FayleTM, FeldpauschTR, FerreiraLV, FinérL, FischerM, FletcherC, FrizzeraL, GianelleD, GlickHB, HarrisDJ, HectorA, HempA, HengeveldG, HéraultB, HerbohnJL, HillersA, Honorio CoronadoEN, HuiC, IbanezT, ImaiN, JagodzińskiAM, JaroszewiczB, JohannsenVK, JolyCA, JuckerT, JungI, KarminovV, KartawinataK, KearsleyE, KenfackD, KennardDK, Kepfer-RojasS, KeppelG, KhanML, KilleenTJ, KimHS, KitayamaK, KöhlM, KorjusH, KraxnerF, KucherD, LaarmannD, LangM, LuHC, LukinaNV, MaitnerBS, MalhiY, MarconE, MarimonBS, Marimon-JuniorBH, MarshallAR, MartinEH, MeaveJA, Melo-CruzO, MendozaC, Mendoza-PoloI, MiscickiS, MerowC, Monteagudo MendozaA, MorenoVS, MukulSA, MundhenkP, Nava-MirandaMG, NeillD, NeldnerVJ, NevenicRV, NgugiMR, NiklausPA, OleksynJ, OntikovP, Ortiz-MalavasiE, PanYD, PaquetteA, Parada-GutierrezA, ParfenovaEI, ParkM, ParrenM, ParthasarathyN, PeriPL, PfautschS, PicardN, PiedadeMTF, PiottoD, PitmanNCA, PoulsenAD, PoulsenJR, PretzschH, Ramirez ArevaloF, Restrepo-CorreaZ, RodeghieroM, RolimSG, RoopsindA, RoveroF, RutishauserE, SaikiaP, Salas-EljatibC, SanerP, SchallP, SchelhaasMJ, SchepaschenkoD, Scherer-LorenzenM, SchmidB, SchöngartJ, SearleEB, SebenV, Serra-DiazJM, SheilD, ShvidenkoAZ, Silva-EspejoJE, SilveiraM, SinghJ, SistP, SlikF, SonkéB, SouzaAF, StereńczakKJ, SvenningJC, SvobodaM, SwanepoelB, TarghettaN, TchebakovaN, ter SteegeH, ThomasR, TikhonovaE, UmunayPM, UsoltsevVA, ValenciaR, ValladaresF, van der PlasF, DoTV, van NulandME, VasquezRM, VerbeeckH, VianaH, VibransAC, VieiraS, von GadowK, WangHF, WatsonJV, WernerGDA, WiserSK, WittmannF, WoellH, WortelV, ZagtR, Zawiła-NiedźwieckiT, ZhangCY, ZhaoXH, ZhouM, ZhuZX, Zo-BiIC, GannGD, CrowtherTW. Integrated global assessment of the natural forest carbon potential. Nature, 2023, 624: 92-101

[59]

MooreDJP, TrahanNA, WilkesP, QuaifeT, StephensBB, ElderK, DesaiAR, NegronJ, MonsonRK. Persistent reduced ecosystem respiration after insect disturbance in high elevation forests. Ecol Lett, 2013, 16(6): 731-737

[60]

MorehouseK, JohnsT, KayeJ, KayeM. Carbon and nitrogen cycling immediately following bark beetle outbreaks in southwestern ponderosa pine forests. For Ecol Manag, 2008, 255(7): 2698-2708

[61]

OadesJM, VassalloAM, WatersAG, WilsonMA. Characterization of organic matter in particle size and density fractions from a red-brown earth by solid state 13C NMR. Soil Res, 1987, 25(1): 71-82

[62]

PanYD, BirdseyRA, FangJY, HoughtonR, KauppiPE, KurzWA, PhillipsOL, ShvidenkoA, LewisSL, CanadellJG, CiaisP, JacksonRB, PacalaSW, McGuireAD, PiaoSL, RautiainenA, SitchS, HayesD. A large and persistent carbon sink in the world’s forests. Science, 2011, 333(6045): 988-993

[63]

PartonWJ, SchimelDS, ColeCV, OjimaDS. Analysis of factors controlling soil organic matter levels in great Plains grasslands. Soil Sci Soc Am J, 1987, 51(5): 1173-1179

[64]

PeltzerDA, AllenRB, LovettGM, WhiteheadD, WardleDA. Effects of biological invasions on forest carbon sequestration. Glob Change Biol, 2010, 16(2): 732-746

[65]

PfeiferEM, HickeJA, MeddensAJH. Observations and modeling of aboveground tree carbon stocks and fluxes following a bark beetle outbreak in the western United States. Glob Change Biol, 2011, 17(1): 339-350

[66]

PugetP, ChenuC, BalesdentJ. Total and young organic matter distributions in aggregates of silty cultivated soils. Eur J Soil Sci, 1995, 46(3): 449-459

[67]

PureswaranDS, RoquesA, BattistiA. Forest insects and climate change. Curr for Rep, 2018, 4(2): 35-50

[68]

ScharlemannJPW, TannerEVJ, HiedererR, KaposV. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag, 2014, 5(1): 81-91

[69]

SeidlR, SchelhaasMJ, RammerW, VerkerkPJ. Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Chang, 2014, 4(9): 806-810

[70]

SenfC, SeidlR. Natural disturbances are spatially diverse but temporally synchronized across temperate forest landscapes in Europe. Glob Chang Biol, 2018, 24(3): 1201-1211

[71]

SenfC, SeidlR. Mapping the forest disturbance regimes of Europe. Nat Sustain, 2021, 4(1): 63-70

[72]

SexstoneAJ, RevsbechNP, ParkinTB, TiedjeJM. Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci Soc Am J, 1985, 49(3): 645-651

[73]

SixJ, PaustianK, ElliottET, CombrinkC. Soil structure and soil organic matter: I. Distribution of aggregate size classes and aggregate associated carbon. Soil Sci Soc Am J, 2000, 64(2): 681-689

[74]

SollinsP, SpycherG, GlassmanCA. Net nitrogen mineralization from light- and heavy-fraction forest soil organic matter. Soil Biol Biochem, 1984, 16(1): 31-37

[75]

SollinsP, HomannP, CaldwellBA. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 1996, 74(1–2): 65-105

[76]

SolomonD, LehmannJ, ZechW. Land use effects on soil organic matter properties of chromic luvisols in semi-arid northern Tanzania: carbon, nitrogen, lignin and carbohydrates. Agric Ecosyst Environ, 2000, 78(3): 203-213

[77]

StevensonFJ. Humus chemistry: genesis, composition, reactions, 1982 New York John Wiley & Sons 448

[78]

SuzukiSN, TsunodaT, NishimuraN, MorimotoJ, SuzukiJI. Dead wood offsets the reduced live wood carbon stock in forests over 50 years after a stand-replacing wind disturbance. For Ecol Manag, 2019, 432: 94-101

[79]

SzczygiełR, KwiatkowskiM, KołakowskiB. Influence of bark beetle infestation on the forest fire risk in the Bialowieza Forest. Sylwan, 2018, 162(11): 955-964

[80]

SzczygiełR, KwiatkowskiM, TyburskiŁ. Wpływ rozpadu drzewostanów w wyniku gradacji kornika drukarza (Ips typographus) na zagrożenie pożarowe Puszczy Białowieskiej. Leśne Prace Badawcze, 2023, 83(1): 1-15

[81]

WilliamsCA, GuH, MacLeanR, MasekJG, CollatzGJ. Disturbance and the carbon balance of US forests: a quantitative review of impacts from harvests, fires, insects, and droughts. Glob Planet Change, 2016, 143: 66-80

[82]

YousefpourR, YouB, HanewinkelM. Simulation of extreme storm effects on regional forest soil carbon stock. Ecol Model, 2019, 399: 39-53

[83]

ZhangFM, ChenJM, PanYD, BirdseyRA, ShenSH, JuWM, HeLM. Attributing carbon changes in conterminous U.S. forests to disturbance and non-disturbance factors from 1901 to 2010. J Geophys Res, 2012, 117(G2): G02021

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

200

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/