Bridging forestry practice and remote sensing: scaling up forest composition with integrated UAV LiDAR and hyperspectral data

Ying Quan , Guofan Shao , Yuanshuo Hao , Mingze Li

Journal of Forestry Research ›› 2026, Vol. 37 ›› Issue (1) : 33

PDF
Journal of Forestry Research ›› 2026, Vol. 37 ›› Issue (1) :33 DOI: 10.1007/s11676-025-01977-x
Original Paper
research-article

Bridging forestry practice and remote sensing: scaling up forest composition with integrated UAV LiDAR and hyperspectral data

Author information +
History +
PDF

Abstract

Remote sensing technology has become increasingly effective for forest mapping but its operational use in forest management and planning is still in its infancy. One of the most critical concerns is that remotely sensed forest attributes are not compatible with those traditionally defined in forestry practice. Tree species composition as a fundamental forest attribute is referred to by per-species tree volume or basal area proportion in conventional forestry but is quantified as tree counts or canopy cover percentage in remote sensing. These differences in the definition of tree species composition imply a barrier for effectively applying remote sensing in forestry decision-making. This study developed a remote sensing framework to derive tree species composition in a mixed-species, complex forest landscape based on tree attributes obtained by integrating UAV LiDAR and hyperspectral data. We classified 11 tree species with machine learning and obtained F-score values of 0.43–0.95. By incorporating tree species into tree diameter at breast height (DBH) prediction models, DBH was estimated with accuracy much higher than a general model of all tree species. The magnitude of increase in DBH-estimation accuracy was proportional to tree species-classification accuracy. Consequently, species composition coefficient estimation error was largely below 20% in the plots where forest type classification accuracy exceeded 90%. The error propagation from tree crown detection to DBH modeling cannot be overlooked for the integrated use of UAV LiDAR and hyperspectral data toward automatic, model-imbedded forestry-oriented surveys.

Keywords

Tree species composition / UAV remote sensing / DBH estimation / Individual tree-based approach (ITA)

Cite this article

Download citation ▾
Ying Quan, Guofan Shao, Yuanshuo Hao, Mingze Li. Bridging forestry practice and remote sensing: scaling up forest composition with integrated UAV LiDAR and hyperspectral data. Journal of Forestry Research, 2026, 37(1): 33 DOI:10.1007/s11676-025-01977-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adão T, Hruška J, Pádua L, Bessa J, Peres E, Morais R, Sousa J. Hyperspectral imaging: a review on uav-based sensors, data processing and applications for agriculture and forestry. Remote Sens, 2017, 9(111110

[2]

Alonso L, Rodríguez-Dorna A, Picos J, Costas F, Armesto J. Automatic differentiation of eucalyptus species through sentinel-2 images, worldview-3 images and lidar data. ISPRS J Photogramm Remote Sens, 2024, 207: 264-281

[3]

Boan JJ, McLaren BE, Malcolm JR. Predicting non-inventoried forest elements using forest inventory data: the case of winter forage for woodland caribou. Écoscience, 2013, 20: 101-111

[4]

Boerema A, Rebelo AJ, Bodi MB, Esler KJ, Meire P, Rohr J. Are ecosystem services adequately quantified?. J Appl Ecol, 2016, 54: 358-370

[5]

Bouvier M, Durrieu S, Fournier RA, Renaud J-P. Generalizing predictive models of forest inventory attributes using an area-based approach with airborne lidar data. Remote Sens Environ, 2015, 156: 322-334

[6]

Breidenbach J, Næsset E, Lien V, Gobakken T, Solberg S. Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data. Remote Sens Environ, 2010, 114: 911-924

[7]

Breidenbach J, Waser LT, Debella-Gilo M, Schumacher J, Rahlf J, Hauglin M, Puliti S, Astrup R. National mapping and estimation of forest area by dominant tree species using sentinel-2 data. Can J for Res, 2021, 51: 365-379

[8]

Candelas Bielza J, Noordermeer L, Næsset E, Gobakken T, Breidenbach J, Ørka HO. Predicting tree species composition using airborne laser scanning and multispectral data in boreal forests. Sci Remote Sens, 2024, 10 100154

[9]

Cao J, Liu K, Zhuo L, Liu L, Zhu Y, Peng L. Combining uav-based hyperspectral and lidar data for mangrove species classification using the rotation forest algorithm. Int J Appl Earth Obs Geoinf, 2021, 102 102414

[10]

Chandrasekaran A, Hupy JP, Shao G. Multi-scale mapping and analysis of broadleaf species distribution using remotely piloted aircraft and satellite imagery. Remote Sensing, 2024, 16(24 4809

[11]

Chen X, Sun Y. Dominant woody plant species recognition with a hierarchical model based on multimodal geospatial data for subtropical forests. J for Res, 2024, 35: 60

[12]

Chen Q, Vaglio Laurin G, Valentini R. Uncertainty of remotely sensed aboveground biomass over an African tropical forest: propagating errors from trees to plots to pixels. Remote Sens Environ, 2015, 160: 134-143

[13]

Colgan MS, Asner GP, Swemmer T. Harvesting tree biomass at the stand level to assess the accuracy of field and airborne biomass estimation in savannas. Ecol Appl, 2013, 23: 1170-1184

[14]

Coomes DA, Allen R, Scott N, Goulding C, Beets P. Designing systems to monitor carbon stocks in forests and shrublands. For Ecol Manag, 2001, 5641: 1-20

[15]

Dalponte M, Coomes DA, Murrell D. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods Ecol Evol, 2016, 7: 1236-1245

[16]

Fassnacht FE, Latifi H, Stereńczak K, Modzelewska A, Lefsky M, Waser LT, Straub C, Ghosh A. Review of studies on tree species classification from remotely sensed data. Remote Sens Environ, 2016, 186: 64-87

[17]

Fauset S, Johnson MO, Gloor M, Baker TR, Monteagudo MA, Brienen RJW, Feldpausch TR, Lopez-Gonzalez G, Malhi Y, ter Steege H, Pitman NCA, Baraloto C, Engel J, Pétronelli P, Andrade A, Camargo JLC, Laurance SGW, Laurance WF, Chave J, Allie E, Vargas PN, Terborgh JW, Ruokolainen K, Silveira M, Aymard C GA, Arroyo L, Bonal D, Ramirez-Angulo H, Araujo-Murakami A, Neill D, Hérault B, Dourdain A, Torres-Lezama A, Marimon BS, Salomão RP, Comiskey JA, Réjou-Méchain M, Toledo M, Licona JC, Alarcón A, Prieto A, Rudas A, van der Meer PJ, Killeen TJ, Marimon Junior B-H, Poorter L, Boot RGA, Stergios B, Torre EV, Costa FRC, Levis C, Schietti J, Souza P, Groot N, Arets E, Moscoso VC, Castro W, Coronado ENH, Peña-Claros M, Stahl C, Barroso J, Talbot J, Vieira ICG, van der Heijden G, Thomas R, Vos VA, Almeida EC, Davila , Aragão LEOC, Erwin TL, Morandi PS, de Oliveira EA, Valadão MBX, Zagt RJ, van der Hout P, Loayza PA, Pipoly JJ, Wang O, Alexiades M, Cerón CE, Huamantupa-Chuquimaco I, Di Fiore A, Peacock J, Camacho NCP, Umetsu RK, de Camargo PB, Burnham RJ, Herrera R, Quesada CA, Stropp J, Vieira SA, Steininger M, Rodríguez CR, Restrepo Z, Muelbert AE, Lewis SL, Pickavance GC, Phillips OL. Hyperdominance in Amazonian forest carbon cycling. Nat Commun, 2015, 6 6857

[18]

Fedrigo M, Newnham GJ, Coops NC, Culvenor DS, Bolton DK, Nitschke CR. Predicting temperate forest stand types using only structural profiles from discrete return airborne lidar. ISPRS J Photogramm Remote Sens, 2018, 136: 106-119

[19]

Fu L, Sun H, Sharma RP, Lei Y, Zhang H, Tang S. Nonlinear mixed-effects crown width models for individual trees of Chinese fir (cunninghamia lanceolata) in south-central China. For Ecol Manage, 2013, 302: 210-220

[20]

Gao Y, Lu D, Li G, Wang G, Chen Q, Liu L, Li D. Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region. Remote Sens, 2018, 10: 627

[21]

Gong Y, Zhu De, Li X, Lv L, Zhang B, Xuan J, Du H. Using uav lidar intensity frequency and hyperspectral features to improve the accuracy of urban tree species classification. IEEE J Sel Top Appl Earth Obs Remote Sens, 2024, 17: 2849-2865

[22]

Gopal S, Woodcock C (1994) Theory and methods for accuracy assessment of thematic maps using fuzzy sets. Photogram Eng Remote Sens; (United States) 60:2: Medium: X; Size: pp 181−188

[23]

Guo Q, Li W, Yu H, Alvarez O. Effects of topographic variability and lidar sampling density on several dem interpolation methods. Photogramm Eng Remote Sens, 2010, 76: 701-712

[24]

Hao Y, Zhen Z, Li F, Zhao Y. A graph-based progressive morphological filtering (gpmf) method for generating canopy height models using als data. Int J Appl Earth Obs Geoinf, 2019, 79: 84-96

[25]

Hao Y, Widagdo FRA, Liu X, Quan Y, Dong L, Li F. Individual tree diameter estimation in small-scale forest inventory using uav laser scanning. Remote Sens, 2020, 13 24

[26]

Hao Y, Widagdo FRA, Liu X, Liu Y, Dong L, Li F. A hierarchical region-merging algorithm for 3-d segmentation of individual trees using uav-lidar point clouds. IEEE Trans Geosci Remote Sens, 2022, 60: 1-16

[27]

Hao Y, Widagdo FRA, Liu X, Quan Y, Liu Z, Dong L, Li F. Estimation and calibration of stem diameter distribution using uav laser scanning data: a case study for larch (larix olgensis) forests in northeast China. Remote Sens Environ, 2022, 268 112769

[28]

Howard J, Gugger S. Fastai: a layered api for deep learning. Information, 2020, 11: 108

[29]

Jucker T, Caspersen J, Chave J, Antin C, Barbier N, Bongers F, Dalponte M, van Ewijk KY, Forrester DI, Haeni M, Higgins SI, Holdaway RJ, Iida Y, Lorimer C, Marshall PL, Momo S, Moncrieff GR, Ploton P, Poorter L, Rahman KA, Schlund M, Sonké B, Sterck FJ, Trugman AT, Usoltsev VA, Vanderwel MC, Waldner P, Wedeux BMM, Wirth C, Wöll H, Woods M, Xiang W, Zimmermann NE, Coomes DA. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob Change Biol, 2016, 23: 177-190

[30]

Korpela IS, Tokola TE. Potential of aerial image-based monoscopic and multiview single-tree forest inventory: a simulation approach. For Sci, 2006, 52: 136-147

[31]

Kukkonen M, Maltamo M, Korhonen L, Packalen P. Multispectral airborne lidar data in the prediction of boreal tree species composition. IEEE Trans Geosci Remote Sens, 2019, 57: 3462-3471

[32]

Kuželka K, Slavík M, Surový P. Very high density point clouds from uav laser scanning for automatic tree stem detection and direct diameter measurement. Remote Sens, 2020, 12: 1236

[33]

Li F (2024) Forest mensuration, 5th edn. China Forestry Publishing House

[34]

Liang X, Wang Y, Pyörälä J, Lehtomäki M, Yu X, Kaartinen H, Kukko A, Honkavaara E, Issaoui AEI, Nevalainen O, Vaaja M, Virtanen J-P, Katoh M, Deng S. Forest in situ observations using unmanned aerial vehicle as an alternative of terrestrial measurements. For Ecosyst, 2019, 6: 20

[35]

Liu K, Wang A, Zhang S, Zhu Z, Bi Y, Wang Y, Du X. Tree species diversity mapping using uas-based digital aerial photogrammetry point clouds and multispectral imageries in a subtropical forest invaded by moso bamboo (phyllostachys edulis). Int J Appl Earth Obs Geoinf, 2021, 104 102587

[36]

Liu J, Quan Y, Zhao G, Yuan B, Wang B, Li M. Uav lidar expands the understanding of forest tree diversity. Ecol Indic, 2025, 175 113534

[37]

Liu Q, Meng S, Zhou H, Zhou G, Li Y (2017) Tree volume tables of China. China Forestry Publishing House

[38]

Ma Y, Zhao Y, Im J, Zhao Y, Zhen Z. A deep-learning-based tree species classification for natural secondary forests using unmanned aerial vehicle hyperspectral images and lidar. Ecol Indic, 2024, 159 111608

[39]

Ma Y, Im J, Zhen Z, Zhao Y. A framework for upscaling aboveground biomass from an individual tree to landscape level and qualifying the multiscale spatial uncertainties for secondary forests. Geo-Spatial Inf Sci, 2025, 28: 97-116

[40]

Magnusson M, Fransson JES, Olsson H. Aerial photo-interpretation using z/i dmc images for estimation of forest variables. Scand J for Res, 2007, 22: 254-266

[41]

Man Q, Dong P, Zhang B, Liu H, Yang X, Wu J, Liu C, Han C, Zhou C, Tan Z. Precise identification of individual tree species in urban areas with high canopy density by multi-sensor uav data in two seasons. Int J Digit Earth, 2025, 18 2496804

[42]

Michałowska M, Rapiński J. A review of tree species classification based on airborne lidar data and applied classifiers. Remote Sens, 2021, 13: 353

[43]

Morgan JL, Gergel SE, Coops NC. Aerial photography: a rapidly evolving tool for ecological management. Bioscience, 2010, 60: 47-59

[44]

Murray BA, Coops NC, Winiwarter L, White JC, Dick A, Barbeito I, Ragab A. Estimating tree species composition from airborne laser scanning data using point-based deep learning models. ISPRS J Photogramm Remote Sens, 2024, 207: 282-297

[45]

Næsset E, Gobakken T. Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens Environ, 2008, 112: 3079-3090

[46]

Nevalainen O, Honkavaara E, Tuominen S, Viljanen N, Hakala T, Yu X, Hyyppä J, Saari H, Pölönen I, Imai N, Tommaselli A. Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sens, 2017, 9: 185

[47]

Ørka HO, Næsset E, Bollandsås OM. Effects of different sensors and leaf-on and leaf-off canopy conditions on echo distributions and individual tree properties derived from airborne laser scanning. Remote Sens Environ, 2010, 114: 1445-1461

[48]

Persson Å, Holmgren J, Söderman U. Detecting and measuring individual trees using an airborne laser scanner. Photogram Eng Remote Sens: J Am Soc of Photogram, 2002, 68: 925-932

[49]

Persson HJ, Olofsson K, Holmgren J. Two-phase forest inventory using very-high-resolution laser scanning. Remote Sens Environ, 2022, 271 112909

[50]

Pradipkumar VH, Alagu Raja RA. Automatic identification of tree species from UAV images using machine learning approaches. J Indian Soc Remote Sens, 2022, 50: 2447-2464

[51]

Pu R. Mapping tree species using advanced remote sensing technologies: a state-of-the-art review and perspective. J Remote Sens, 2021, 2021 26

[52]

Puliti S, Gobakken T, Ørka HO, Næsset E. Assessing 3d point clouds from aerial photographs for species-specific forest inventories. Scand J for Res, 2016, 32: 68-79

[53]

Qin H, Zhou W, Yao Y, Wang W. Individual tree segmentation and tree species classification in subtropical broadleaf forests using uav-based lidar, hyperspectral, and ultrahigh-resolution rgb data. Remote Sens Environ, 2022, 280 113143

[54]

Quan Y, Li M, Hao Y, Wang B. Comparison and evaluation of different pit-filling methods for generating high resolution canopy height model using UAV laser scanning data. Remote Sens, 2021, 13: 2239

[55]

Quan Y, Li M, Hao Y, Liu J, Wang B. Tree species classification in a typical natural secondary forest using uav-borne lidar and hyperspectral data. Gisci Remote Sens, 2023, 60: 2171706

[56]

Schiefer F, Kattenborn T, Frick A, Frey J, Schall P, Koch B, Schmidtlein S. Mapping forest tree species in high resolution uav-based rgb-imagery by means of convolutional neural networks. ISPRS J Photogramm Remote Sens, 2020, 170: 205-215

[57]

Shang X, Chisholm LA. Classification of Australian native forest species using hyperspectral remote sensing and machine-learning classification algorithms. IEEE J Sel Top Appl Earth Obs Remote Sens, 2014, 7: 2481-2489

[58]

Shao G, Tang L, Zhang H. Introducing image classification efficacies. IEEE Access, 2021, 9: 134809-134816

[59]

Shi Y, Wang T, Skidmore AK, Heurich M. Important lidar metrics for discriminating forest tree species in central europe. ISPRS J Photogramm Remote Sens, 2018, 137: 163-174

[60]

Shugart HH, Asner GP, Fischer R, Huth A, Knapp N, Toan TL, Shuman JK. Computer and remote-sensing infrastructure to enhance large-scale testing of individual-based forest models. Front Ecol Environ, 2015, 13: 503-511

[61]

Sun Y, Jin X, Pukkala T, Li F. Predicting individual tree diameter of larch (larix olgensis) from UAV-lidar data using six different algorithms. Remote Sens, 2022, 14: 1125

[62]

Sun Y, Jin X, Pukkala T, Li F. A hybrid method for tree-level forest planning. J for Res, 2025, 36: 62

[63]

Tang L, Shao G. Drone remote sensing for forestry research and practices. J for Res, 2015, 26: 791-797

[64]

Tang L, Shao J, Pang S, Wang Y, Maxwell A, Hu X, Gao Z, Lan T, Shao G. Bolstering performance evaluation of image segmentation models with efficacy metrics in the absence of a gold standard. IEEE Trans Geosci Remote Sens, 2024, 62: 1-12

[65]

China SAo (2020) Technical regulations for continuous forest inventory. In: China Standards Press

[66]

Temesgen H, Zhang CH, Zhao XH. Modelling tree height–diameter relationships in multi-species and multi-layered forests: a large observational study from northeast China. For Ecol Manag, 2014, 316: 78-89

[67]

Tompalski P, Coops NC, White JC, Wulder MA. Simulating the impacts of error in species and height upon tree volume derived from airborne laser scanning data. For Ecol Manag, 2014, 327: 167-177

[68]

Vincent G, Sabatier D, Rutishauser E. Revisiting a universal airborne light detection and ranging approach for tropical forest carbon mapping: scaling-up from tree to stand to landscape. Oecologia, 2014, 175: 439-443

[69]

Wallis CIB, Crofts AL, Inamdar D, Arroyo-Mora JP, Kalacska M, Laliberté É, Vellend M. Remotely sensed carbon content: the role of tree composition and tree diversity. Remote Sens Environ, 2023, 284 113333

[70]

Wang Y, Lehtomäki M, Liang X, Pyörälä J, Kukko A, Jaakkola A, Liu J, Feng Z, Chen R, Hyyppä J. Is field-measured tree height as reliable as believed—a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest. ISPRS J Photogramm Remote Sens, 2019, 147: 132-145

[71]

Wang L, Lu D, Xu L, Robinson DT, Tan W, Xie Q, Guan H, Chapman MA, Li J. Individual tree species classification using low-density airborne multispectral lidar data via attribute-aware cross-branch transformer. Remote Sens Environ, 2024

[72]

White JC, Coops NC, Wulder MA, Vastaranta M, Hilker T, Tompalski P. Remote sensing technologies for enhancing forest inventories: a review. Can J Remote Sens, 2016, 42: 619-641

[73]

Wieser M, Mandlburger G, Hollaus M, Otepka J, Glira P, Pfeifer N. A case study of uas borne laser scanning for measurement of tree stem diameter. Remote Sens, 2017, 9: 1154

[74]

Wu Z, Liu X, Cheng S, Yang C, Wang Z, Liu Y, Dong L, Li F, Hao Y. Evaluating the effectiveness of forest type stratification for aboveground biomass inference. Int J Appl Earth Obs Geoinf, 2025, 143 104829

[75]

Yin D, Wang L, Lu Y, Shi C. Mangrove tree height growth monitoring from multi-temporal uav-lidar. Remote Sens Environ, 2024, 303 114002

[76]

Zhang B, Zhao L, Zhang X. Three-dimensional convolutional neural network model for tree species classification using airborne hyperspectral images. Remote Sens Environ, 2020, 247 111938

[77]

Zhang C, Xia K, Feng H, Yang Y, Du X. Tree species classification using deep learning and rgb optical images obtained by an unmanned aerial vehicle. J for Res, 2020, 32: 1879-1888

[78]

Zhao Y, Hao Y, Zhen Z, Quan Y. A region-based hierarchical cross-section analysis for individual tree crown delineation using ALS data. Remote Sens, 2017, 9: 1084

RIGHTS & PERMISSIONS

Northeast Forestry University

PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

/