Resilient but declining: drought induced dieback of Aleppo pine stands in western Algeria

Abdelhak Bouknine , Mohamed Sarmoum , Cristina Valeriano , Mohamed Ait Hammou , Fatima Mokhfi , Hakim Tefiel , J. Julio Camarero

Journal of Forestry Research ›› 2026, Vol. 37 ›› Issue (1) : 32

PDF
Journal of Forestry Research ›› 2026, Vol. 37 ›› Issue (1) :32 DOI: 10.1007/s11676-025-01976-y
Original Paper
research-article

Resilient but declining: drought induced dieback of Aleppo pine stands in western Algeria

Author information +
History +
PDF

Abstract

Drought affects forest productivity and tree radial growth in multiple ways. Two major impacts are growth decline and loss of resilience, i.e., the capacity to recover normal growth rates after a drought, which may indicate impending death. Growth decline and dieback processes have been reported for Mediterranean conifers, but information for natural and planted stands under semi-arid conditions is still scarce, particularly across the increasingly arid Maghreb. We addressed this by assessing growth rates, variability and resilience indices in Algerian Aleppo pine (Pinus halepensis Mill.) stands under Mediterranean sub-humid to semi-arid conditions. Several climate variables and teleconnection patterns (NAO, North Atlantic Oscillation; WeMO, Western Mediterranean Oscillation) were investigated to determine the main drivers of growth decline. Growth resilience indices were calculated at site and tree levels and related to growth trends. Mean basal area increment (BAI) during 2000–2023 was 16.6 cm2 a−1. Negative BAI trends occurred for all sites since 2013, as aridification intensified. All stands showed growth decreases during dry years regardless of site conditions or growth rates. Growth was constrained by cold January conditions, dry conditions from the previous winter to summer, and elevated temperatures from late spring to late summer. Long (12-month) droughts peaking in summer suppressed growth, which was also inversely associated with NAO June indices. Growth decline responded to recovery and resistance indices during the 2012 and 2017 droughts. The results show that long-term aridification triggers growth decline despite short-term, post-drought recovery.

Keywords

Dendroecology / Drought stress / Forest dieback / Growth resilience / Pinus halepensis

Cite this article

Download citation ▾
Abdelhak Bouknine, Mohamed Sarmoum, Cristina Valeriano, Mohamed Ait Hammou, Fatima Mokhfi, Hakim Tefiel, J. Julio Camarero. Resilient but declining: drought induced dieback of Aleppo pine stands in western Algeria. Journal of Forestry Research, 2026, 37(1): 32 DOI:10.1007/s11676-025-01976-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alexou M. Development-specific responses to drought stress in Aleppo pine (Pinus halepensis Mill.) seedlings. Tree Physiol, 2013, 33(10): 1030-1042

[2]

Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S. Forest ecology. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 2015, 349(6247): 528-532

[3]

Benalia S (2009) The green barrier in Algeria: actual situation and development prospect. In: Technology and management to ensure sustainable agriculture, agro-systems, forestry and safety, XXXIII CIOSTA–CIGR V conference 2009, Reggio Calabria (Italy) and IUFRO (Unit 3.06.00) Workshop, pp 2163–2166

[4]

Borghetti M, Cinnirella S, Magnani F, Saracino A. Impact of long-term drought on xylem embolism and growth in Pinus halepensis Mill. Trees, 1998, 12(4): 187-195

[5]

Briffa KR, Jones PD. Cook ER, Kairiukstis LA. Basic chronology statistics and assessment. Methods of dendrochronology applications in the environmental sciences, 1990, Dordrecht, Kluwer Academic Publishers137152

[6]

Bunn AG. A dendrochronology program library in R (dplR). Dendrochronologia, 2008, 26(2): 115-124

[7]

Bunn A, Korpela M, Biondi F, Campelo F, Klesse S, Mérian P, Qeadan F, Zang C (2024) dplR: dendrochronology program library in R. R package version 1.7.8, https://CRAN.R-project.org/package=dplR

[8]

Cabon A, DeRose RJ, Shaw JD, Anderegg WRL. Declining tree growth resilience mediates subsequent forest mortality in the US Mountain West. Glob Chang Biol, 2023, 29(17): 4826-4841

[9]

Camarero JJ. Linking functional traits and climate-growth relationships in Mediterranean species through wood density. IAWA J, 2019, 40(2): 215-252

[10]

Camarero JJ. Imprints of climate stress on tree growth (the past as harbinger of the future): ecological stress memory in Tibetan Plateau juniper forests. Proc Biol Sci, 2023, 290(1992 20222241

[11]

Camarero JJ, Olano JM, Parras A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol, 2010, 185(2): 471-480

[12]

Camarero JJ, Gazol A, Sangüesa-Barreda G, Oliva J, Vicente-Serrano SM. To die or not to die: early warnings of tree dieback in response to a severe drought. J Ecol, 2015, 103(1): 44-57

[13]

Camarero JJ, Sánchez-Salguero R, Ribas M, Touchan R, Andreu-Hayles L, Dorado-Liñán I, Meko DM, Gutiérrez E. Biogeographic, atmospheric, and climatic factors influencing tree growth in Mediterranean Aleppo pine forests. Forests, 2020, 11(7): 736

[14]

Camarero JJ (2011) Direct and indirect effects of the north Atlantic oscillation on tree growth and forest decline in northeastern Spain. In: Hydrological, socioeconomic and ecological impacts of the north Atlantic oscillation in the Mediterranean Region. Springer Netherlands, pp 129–152. https://doi.org/10.1007/978-94-007-1372-7_10

[15]

Choury Z, Shestakova TA, Himrane H, Touchan R, Kherchouche D, Camarero JJ, Voltas J. Quarantining the Sahara desert: growth and water-use efficiency of Aleppo pine in the Algerian Green Barrier. Eur J for Res, 2017, 136(1139-152

[16]

Cramer W, Guiot J, Fader M, Garrabou J, Gattuso JP, Iglesias A, Lange MA, Lionello P, Llasat MC, Paz S, Peñuelas J, Snoussi M, Toreti A, Tsimplis MN, Xoplaki E. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat Clim Change, 2018, 8(11): 972-980

[17]

de Luis M, Gričar J, Čufar K, Raventós J. Seasonal dynamics of wood formation in Pinus halepensis from dry and semi-arid ecosystems in Spain. IAWA J, 2007, 28(4): 389-404

[18]

Delworth TL, Cooke WF, Naik V, Paynter D, Zhang LP. A weakened AMOC may prolong greenhouse gas-induced Mediterranean drying even with significant and rapid climate change mitigation. Proc Natl Acad Sci USA, 2022, 119(35 e2116655119

[19]

DeSoto L, Cailleret M, Sterck F, Jansen S, Kramer K, Robert EMR, Aakala T, Amoroso MM, Bigler C, Camarero JJ, Čufar K, Gea-Izquierdo G, Gillner S, Haavik LJ, Hereş AM, Kane JM, Kharuk VI, Kitzberger T, Klein T, Levanič T, Linares JC, Mäkinen H, Oberhuber W, Papadopoulos A, Rohner B, Sangüesa-Barreda G, Stojanovic DB, Suárez ML, Villalba R, Martínez-Vilalta J. Low growth resilience to drought is related to future mortality risk in trees. Nat Commun, 2020, 11 545

[20]

Dong YT, Fang OY. Decreasing resistance as an early warning signal of forest declines in the Qilian Mountains. Biol Conserv, 2024, 299 110809

[21]

Eichhorn J, Roskams P, Potočić N, Timmermann V, Ferretti M (2016) Part IV: visual assessment of crown condition and damaging agents. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen institute of forest ecosystems, Eberswalde, Germany

[22]

Fritts HC. Tree rings and climate, 1976, London, The Blackburn Press

[23]

García de la Serrana R, Vilagrosa A, Alloza JA. Pine mortality in southeast Spain after an extreme dry and warm year: interactions among drought stress, carbohydrates and bark beetle attack. Trees, 2015, 29(6): 1791-1804

[24]

Gazol A, Camarero JJ. Compound climate events increase tree drought mortality across European forests. Sci Total Environ, 2022, 816 151604

[25]

Gazol A, Camarero JJ, Anderegg WRL, Vicente-Serrano SM. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob Ecol Biogeogr, 2017, 26(2): 166-176

[26]

Gazol A, Ribas M, Gutiérrez E, Camarero JJ. Aleppo pine forests from across Spain show drought-induced growth decline and partial recovery. Agric for Meteorol, 2017, 232: 186-194

[27]

Gazol A, Oliva J, Valeriano C, Colangelo M, Camarero JJ. Mixed pine forests in a hotter and drier world: the great resilience to drought of Aleppo pine benefits it over other coexisting pine species. Front for Glob Change, 2022, 5 899425

[28]

Gessler A, Bottero A, Marshall J, Arend M. The way back: recovery of trees from drought and its implication for acclimation. New Phytol, 2020, 228(6): 1704-1709

[29]

Gómez-Sanz V, Gastón A, García-Viñas JI, Serrada-Hierro R. Site-scale soil conditions influencing the decline of Aleppo pine stands in Mediterranean Spanish woodland. Plant Soil, 2024, 504(1): 493-504

[30]

Gong XF, Yuan DY, Zhu LJ, Li ZS, Wang XC. Long-term changes in radial growth of seven tree species in the mixed broadleaf-Korean pine forest in Northeast China: are deciduous trees favored by climate change?. J Forestry Res, 2024, 35(1): 70

[31]

Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, Siegwolf RTW, Sperry JS, McDowell NG. Plant responses to rising vapor pressure deficit. New Phytol, 2020, 226(61550-1566

[32]

Harris I, Osborn TJ, Jones P, Lister D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data, 2020, 7(1): 109

[33]

Hoerling M, Eischeid J, Perlwitz J, Quan XW, Zhang T, Pegion P. On the increased frequency of Mediterranean drought. J Clim, 2012, 25(62146-2161

[34]

Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. In: Tree ring bull

[35]

Hurrell JW. Decadal trends in the north Atlantic oscillation: regional temperatures and precipitation. Science, 1995, 269(5224): 676-679

[36]

JMP (2025) JMP statistical discovery LLC, Cary, NC, USA

[37]

Klein T, Cohen S, Yakir D. Hydraulic adjustments underlying drought resistance of Pinus halepensis. Tree Physiol, 2011, 31(6): 637-648

[38]

Klein T, Hoch G, Yakir D, Körner C. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest. Tree Physiol, 2014, 34(9): 981-992

[39]

Lee JY, Marotzke J, Bala G, Cao L, Corti S, Dunne JP, Engelbrecht F, Fischer E, Fyfe JC, Jones C, Maycock A, Mutemi J, Ndiaye O, Panickal S, Zhou TJ (2021) Future global climate: Scenario-based projections and near term information. In climate change 2021: the Physical science basis. contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B. (eds.)]. Cambridge Univ. Press, Cambridge, UK and New York, USA, pp. 553–672. https://doi.org/10.1017/9781009157896.006

[40]

Li JT, Xie YY, Camarero JJ, Gazol A, de González Andrés E, Ying LX, Shen ZH. Optimistic growth of marginal region plantations under climate warming: assessing divergent drought resilience. Glob Chang Biol, 2024, 30(8 e17459

[41]

Li MY, Yang LL, Cao Y, Wu DD, Hao GY. Aging Mongolian pine plantations face high risks of drought-induced growth decline: evidence from both individual tree and forest stand measurements. J for Res, 2024, 35(1 38

[42]

Lloret F, Keeling EG, Sala AN. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 2011, 120(12): 1909-1920

[43]

Manrique-Alba À, Beguería S, Molina AJ, González-Sanchis M, Tomàs-Burguera M, Del Campo AD, Colangelo M, Camarero JJ. Long-term thinning effects on tree growth, drought response and water use efficiency at two Aleppo pine plantations in Spain. Sci Total Environ, 2020, 728 138536

[44]

Manrique-Alba À, Beguería S, Camarero JJ. Long-term effects of forest management on post-drought growth resilience: an analytical framework. Sci Total Environ, 2022, 810 152374

[45]

Mariotti A, Dell’Aquila A. Decadal climate variability in the Mediterranean region: roles of large-scale forcings and regional processes. Clim Dyn, 2012, 38(5): 1129-1145

[46]

Martin-Vide J, Lopez-Bustins JA. The western Mediterranean oscillation and rainfall in the Iberian Peninsula. Int J Climatol, 2006, 26(11): 1455-1475

[47]

Mauri A, Di Leo M, de Rigo D, Caudullo G (2016) Pinus halepensis and Pinus brutia in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp e0166b8

[48]

Maxwell RS, Larsson LA. Measuring tree-ring widths using the CooRecorder software application. Dendrochronologia, 2021, 67 125841

[49]

Mihi A, Zerroug K, Kouachi ME, Benarfa N. Spatiotemporal changes of desertification degree in the Algerian green barrier over the last four decades (1984–2020). Arid Land Res Manag, 2024, 38(3): 362-381

[50]

Morcillo L, Muñoz-Rengifo JC, Torres-Ruiz JM, Delzon S, Moutahir H, Vilagrosa A. Post-drought conditions and hydraulic dysfunction determine tree resilience and mortality across Mediterranean Aleppo pine (Pinus halepensis) populations after an extreme drought event. Tree Physiol, 2022, 42(7): 1364-1376

[51]

Mu YM, Lyu LX, Li Y, Fang OY. Tree-ring evidence of ecological stress memory. Proc Biol Sci, 2022, 289(1985 20221850

[52]

Oksanen FJ, Simpson G, Blanchet FG, Kindt R, Legendre P, Stevens H, Wagner H (2023) vegan: community ecology package. R package version 2.6–5. https://github.com/vegandevs/vegan

[53]

Pasho E, Julio Camarero J, Vicente-Serrano SM. Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis. Trees, 2012, 26(6): 1875-1886

[54]

Peng ZT, Zhang YD, Zhu LJ, Guo MM, Lu QG, Xu K, Shao H, Mo QF, Liu SR. Spatial and temporal patterns of the sensitivity of radial growth response by Picea schrenkiana to regional climate change in the Tianshan Mountains. J Forestry Res, 2023, 34(6): 1669-1681

[55]

Ponton S, Bornot Y, Bréda N. Soil fertilization transiently increases radial growth in sessile oaks but does not change their resilience to severe soil water deficit. For Ecol Manag, 2019, 432: 923-931

[56]

Preisler Y, Tatarinov F, Grünzweig JM, Bert D, Ogée J, Wingate L, Rotenberg E, Rohatyn S, Her N, Moshe I, Klein T, Yakir D. Mortality versus survival in drought-affected Aleppo pine forest depends on the extent of rock cover and soil stoniness. Funct Ecol, 2019, 33(5): 901-912

[57]

R Core Team (2024) R: a language and environment for statistical computing. R foundation, Vienna, Austria. https://www.R-project.org/

[58]

Rodó X, Baert E, Comín FA. Variations in seasonal rainfall in Southern Europe during the present century: relationships with the North Atlantic Oscillation and the El Niño-Southern Oscillation. Clim Dyn, 1997, 13(4): 275-284

[59]

Sánchez-Salguero R, Navarro-Cerrillo RM, Camarero JJ, Fernández-Cancio Á. Selective drought-induced decline of pine species in southeastern Spain. Clim Change, 2012, 113(3): 767-785

[60]

Sánchez-Salguero R, Camarero JJ, Dobbertin M, Fernández-Cancio Á, Vilà-Cabrera A, Manzanedo RD, Zavala MA, Navarro-Cerrillo RM. Contrasting vulnerability and resilience to drought-induced decline of densely planted vs. natural rear-edge Pinus nigra forests. For Ecol Manag, 2013, 310: 956-967

[61]

Sarmoum M, Guibal F, Abdoun F. Effects of station-specific factors on radial growth and responses to climate in Aleppo pines in Algeria’s Ouarsenis range. Bois & Forêts des Tropiques, 2016, 329: 17-27

[62]

Sarmoum M, Camarero JJ, Abdoun F. Aridification increases growth resistance of Atlas cedar forests in NW Algeria. For Ecol Manag, 2024, 556 121730

[63]

Sarris D, Christodoulakis D. Topographic and climatic effects on Pinus halepensis s.l. growth at its drought tolerance margins under climatic change. J Forestry Res, 2024, 35(1 102

[64]

Sarris D, Christodoulakis D, Körner C. Impact of recent climatic change on growth of low elevation eastern Mediterranean forest trees. Clim Change, 2011, 106(2): 203-223

[65]

Schwarz J, Skiadaresis G, Kohler M, Kunz J, Schnabel F, Vitali V, Bauhus J. Quantifying growth responses of trees to drought—a critique of commonly used resilience indices and recommendations for future studies. Curr for Rep, 2020, 6(3): 185-200

[66]

Serra-Maluquer X, Granda E, Camarero JJ, Vilà-Cabrera A, Jump AS, Sánchez-Salguero R, Sangüesa-Barreda G, Imbert JB, Gazol A. Impacts of recurrent dry and wet years alter long-term tree growth trajectories. J Ecol, 2021, 109(3): 1561-1574

[67]

Stokes MA, Smiley TL. An introduction to tree-ring dating, 1968, Chicago, USA, University of Chicago Press

[68]

Tramblay Y, El Adlouni S, Servat E. Trends and variability in extreme precipitation indices over Maghreb countries. Nat Hazards Earth Syst Sci, 2013, 13(12): 3235-3248

[69]

van der Maaten-Theunissen M, van der Maaten E, Bouriaud O. PointRes: an R package to analyze pointer years and components of resilience. Dendrochronologia, 2015, 35: 34-38

[70]

van der Maaten-Theunissen M, Trouillier M, Schwarz J, Skiadaresis G, Thurm EA, van der Maaten E. PointRes 2.0: new functions to describe tree resilience. Dendrochronologia, 2021, 70 125899

[71]

Veuillen L, Prévosto B, Alfaro-Sánchez R, Badeau V, Battipaglia G, Beguería S, Bravo F, Boivin T, Camarero JJ, Čufar K, Davi H, De Luis M, Del Campo A, Del Rio M, Di Filippo A, Dorman M, Durand-Gillmann M, Ferrio JP, Gea-Izquierdo G, González-Sanchis M, Granda E, Guibal F, Gutierrez E, Helluy M, El Khorchani A, Klein T, Levillain J, Linares JC, Manrique-Alba A, Martinez Vilalta J, Molina AJ, Moreno-Gutiérrez C, Nicault A, Olivar J, Papadopoulos A, Perevolotsky A, Rathgeber C, Ribas M, Ripullone F, Ruano I, Saintonge FX, Sánchez-Salguero R, Sarris D, Serra-Maluquer X, Svoray T, Tallieu C, Valor T, Vennetier M, Voltas J, Cailleret M. Pre- and post-drought conditions drive resilience of Pinus halepensis across its distribution range. Agric for Meteorol, 2023, 339 109577

[72]

Vicente-Serrano SM, Beguería S, López-Moreno JI. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim, 2010, 23(7): 1696-1718

[73]

Wang B, Chen T, Xu GB, Wu GJ, Liu GX. Management can mitigate drought legacy effects on the growth of a moisture-sensitive conifer tree species. For Ecol Manag, 2023, 544 121196

[74]

Wigley TML, Briffa KR, Jones PD. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Climate Appl Meteor, 1984, 23(2): 201-213

[75]

Xoplaki E, González-Rouco JF, Luterbacher J, Wanner H. Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim Dyn, 2004, 23(1): 63-78

[76]

Yamaguchi DK. A simple method for cross-dating increment cores from living trees. Can J for Res, 1991, 21(3): 414-416

[77]

Zang C, Biondi F. Treeclim: an R package for the numerical calibration of proxy-climate relationships. Ecography, 2015, 38(4, Intecol special issue): 431-436

[78]

Zlobin IE. Linking the growth patterns of coniferous species with their performance under climate aridization. Sci Total Environ, 2022, 831 154971

[79]

Zomer RJ, Xu JC, Trabucco A. Version 3 of the global aridity index and potential evapotranspiration database. Sci Data, 2022, 9(1409

Funding

Instituto Pirenaico de Ecología (IPE)

RIGHTS & PERMISSIONS

The Author(s)

PDF

26

Accesses

0

Citation

Detail

Sections
Recommended

/