Increase in temperature and precipitation reduces the sensitivity of δ13C dynamics to temperature in cold-temperate forest respiration products

Xin Zhang , Qiuliang Zhang , Changwei Lü , Shoujia Sun , Rula Sa , Bing Wang , Fei Wang , Yanan Jian

Journal of Forestry Research ›› 2025, Vol. 37 ›› Issue (1) : 17

PDF
Journal of Forestry Research ›› 2025, Vol. 37 ›› Issue (1) :17 DOI: 10.1007/s11676-025-01963-3
Original Paper
research-article

Increase in temperature and precipitation reduces the sensitivity of δ13C dynamics to temperature in cold-temperate forest respiration products

Author information +
History +
PDF

Abstract

Research on the sensitivity of carbon isotope composition (δ13C) dynamics to temperature (Q10) and its influencing factors in the process of ecosystem respiration (Re) can accurately predict the trend for ecosystem carbon release with global warming for assessing ecosystem carbon sequestration capacity. We used stable isotope techniques to monitor canopy CO2 concentration and δ13C in a cold-temperate Larix gmelinii forest in Northeast China. δ13C values were also analyzed in plant and soil samples across five stand types. The sensitivity of δ13C dynamics to temperature during Re and the main factors affecting the variation in Q10 values were determined. Carbon isotope composition of ecosystem respiration (δ13CRe), autotrophic respiration (δ13CRa), and heterotrophic respiration (δ13CRh) decreased with increase in temperature, and δ13CRa < δ13CRe < δ13CRh. The contribution of Ra and Rh to Re were 51.57 and 48.42%, respectively. Temperature and precipitation had inhibitory effects on Q10, whereas soil organic carbon and total nitrogen had stimulatory effects. Autotrophic respiration is the dominant pathway for carbon release in this ecosystem. Heterotrophic respiration, and particularly maintenance respiration, are more temperature-sensitive. Rising temperatures and precipitation reduce the δ13C sensitivity to temperature.

Keywords

Ecosystem respiration / Autotrophic respiration / Heterotrophic respiration / Carbon isotopes / Temperature sensitivity / Larix gmelinii

Cite this article

Download citation ▾
Xin Zhang, Qiuliang Zhang, Changwei Lü, Shoujia Sun, Rula Sa, Bing Wang, Fei Wang, Yanan Jian. Increase in temperature and precipitation reduces the sensitivity of δ13C dynamics to temperature in cold-temperate forest respiration products. Journal of Forestry Research, 2025, 37(1): 17 DOI:10.1007/s11676-025-01963-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 2010, 329(5993): 834-838.

[2]

Boetius A. Global change microbiology—big questions about small life for our future. Nat Rev Microbiol, 2019, 17(6): 331-332.

[3]

Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R. Globally rising soil heterotrophic respiration over recent decades. Nature, 2018, 560(7716): 80-83.

[4]

Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 1998, 396(6711): 570-572.

[5]

Bowling DR, McDowell NG, Bond BJ, Law BE, Ehleringer JR. 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia, 2002, 131(1): 113-124.

[6]

Bowling DR, Pataki DE, Randerson JT. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol, 2008, 178(1): 24-40.

[7]

Brito P, Morales D, Wieser G, Jiménez MS. Spatial and seasonal variations in stem CO2 efflux of Pinus canariensis at their upper distribution limit. Trees, 2010, 24(3): 523-531.

[8]

Buchmann N. Plant ecophysiology and forest response to global change. Tree Physiol, 2002, 22(15–16): 1177-1184.

[9]

Cai TB, Flanagan LB, Jassal RS, Black TA. Modelling environmental controls on ecosystem photosynthesis and the carbon isotope composition of ecosystem-respired CO2 in a coastal Douglas-fir forest. Plant Cell Environ, 2008, 31(4): 435-453.

[10]

Chen BZ, Chen JM. Diurnal, seasonal and interannual variability of carbon isotope discrimination at the canopy level in response to environmental factors in a boreal forest ecosystem. Plant Cell Environ, 2007, 30(10): 1223-1239.

[11]

Chen JM, Liu J, Cihlar J, Goulden ML. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol Model, 1999, 124(2–3): 99-119.

[12]

CMA Climate Change Centre (2023) Blue book on climate change in China. Beijing: Science Press pp. 3–5 (In Chinese)

[13]

Cui N, Lv GH, Liu XX, Qin L, Ran QY. Soil physical-chemical properties of Populus euphratica and Haloxylon persicum communities and their relationship. Arid Zone Res, 2015, 32(3): 476-482. in Chinese

[14]

Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP. Stable isotopes in plant ecology. Annu Rev Ecol Syst, 2002, 33(2002): 507-559.

[15]

Farquhar GD, Ehleringer JR, Hubick KT. Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40: 503-537.

[16]

Gärdenäs AI, Ågren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Kätterer T, Knicker H, Nilsson SI, Näsholm T, Ogle S, Paustian K, Persson T, Stendahl J. Knowledge gaps in soil carbon and nitrogen interactions–From molecular to global scale. Soil Biol Biochem, 2011, 43(4): 702-717.

[17]

Han L, Wang QF, Chen Z, Yu GR, Zhou GS, Chen SP, Li YN, Zhang YP, Yan JH, Wang HM, Han SJ, Wang YF, Sha LQ, Shi PL, Zhang YJ, Xiang WH, Zhao L, Zhang QL, He QH, Mo XG, Guo JX. Spatial patterns and climate controls of seasonal variations in carbon fluxes in China’s terrestrial ecosystems. Glob Planet Change, 2020, 189103175

[18]

Huang N, Wang L, Song XP, Black TA, Jassal RS, Myneni RB, Wu CY, Wang L, Song WJ, Ji DB, Yu SS, Niu Z. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci Adv, 2020, 6(41eabb8508

[19]

Irvine J, Law BE, Martin JG, Vickers D. Interannual variation in soil CO2 efflux and the response of root respiration to climate and canopy gas exchange in mature ponderosa pine. Glob Change Biol, 2008, 14(12): 2848-2859.

[20]

Keeling CD. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta, 1958, 13(4): 322-334.

[21]

Knapp AK, Hoover DL, Wilcox KR, Avolio ML, Koerner SE, La Pierre KJ, Loik ME, Luo YQ, Sala OE, Smith MD. Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Glob Change Biol, 2015, 21(7): 2624-2633.

[22]

Kodama N, Ferrio JP, Brüggemann N, Gessler A. Short-term dynamics of the carbon isotope composition of CO2 emitted from a wheat agroecosystem—physiological and environmental controls. Plant Biol, 2011, 13(1): 115-125.

[23]

Li JB. Characteristics of greenhouse gas emission fluxes from Larix gmelinii forest in Daxing’an mountains, 2018, Xiangfang. Northeast Forestry University

[24]

Li XM, Zhang QL. Impact of climate factors on CO2 flux characteristics in a Larix gmelinii forest ecosystem. J Beijing for Univ, 2015, 37(8): 31-39. in Chinese

[25]

Li JQ, Nie M, Pendall E, Reich PB, Pei JM, Noh NJ, Zhu T, Li B, Fang CM. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob Change Biol, 2019, 26(3): 1873-1885.

[26]

Li ZL, Tian DS, Wang BX, Wang JS, Wang S, Chen HYH, Xu XF, Wang CH, He NP, Niu SL. Microbes drive global soil nitrogen mineralization and availability. Glob Change Biol, 2019, 25(3): 1078-1088.

[27]

Li JQ, Pei JM, Pendall E, Fang CM, Nie M. Spatial heterogeneity of temperature sensitivity of soil respiration: a global analysis of field observations. Soil Biol Biochem, 2020, 141107675

[28]

Lin G, Ehleringer JR. Carbon isotopic fractionation does not occur during dark respiration in C3 and C4 plants. Plant Physiol, 1997, 114(1): 391-394.

[29]

Liu Y, He NP, Zhu JX, Xu L, Yu GR, Niu SL, Sun XM, Wen XF. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Glob Change Biol, 2017, 23(8): 3393-3402.

[30]

Liu L, Li F, Guo LL, Yang QP, Qiao YJ, Nie W, Yang B, Zhang XX, Cao X, Liang WJ, Zheng YP. Seasonal variations in stem respiration and temperature sensitivity of Populus tomentosa. Acta Ecol Sin, 2019, 39(18): 6762-6771. DOI: in Chinese

[31]

Lloyd J, Taylor JA. On the temperature dependence of soil respiration. Funct Ecol, 1994, 8(3): 315.

[32]

Luyssaert S, Reichstein M, Schulze ED, Janssens IA, Law BE, Papale D, Dragoni D, Goulden ML, Granier A, Kutsch WL, Linder S, Matteucci G, Moors E, Munger JW, Pilegaard K, Saunders M, Falge EM. Toward a consistency cross-check of eddy covariance flux–based and biometric estimates of ecosystem carbon balance. Glob Biogeochem Cycles, 2009, 2332008GB003377

[33]

Nagy Z, Pintér K, Pavelka M, Darenová E, Balogh J. Carbon fluxes of surfaces vs. ecosystems: advantages of measuring eddy covariance and soil respiration simultaneously in dry grassland ecosystems. Biogeosciences, 2011, 89): 2523-2534.

[34]

Peng SS, Piao SL, Wang T, Sun JY, Shen ZH. Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biol Biochem, 2009, 41(5): 1008-1014.

[35]

Peterson ME, Daniel RM, Danson MJ, Eisenthal R. The dependence of enzyme activity on temperature: determination and validation of parameters. Biochem J, 2007, 402(2): 331-337.

[36]

Ryan MG. Growth and maintenance respiration in stems of Pinus contorta and Picea engelmannii. Can J for Res, 1990, 20(1): 48-57.

[37]

Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G. Tree and forest functioning in response to global warming. New Phytol, 2001, 149(3): 369-399.

[38]

Schipper LA, Hobbs JK, Rutledge S, Arcus VL. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Glob Change Biol, 2014, 20(11): 3578-3586.

[39]

Schwalm CR, Black TA, Morgenstern K, Humphreys ER. A method for deriving net primary productivity and component respiratory fluxes from tower-based eddy covariance data: a case study using a 17-year data record from a Douglas-fir chronosequence. Glob Change Biol, 2007, 13(2): 370-385.

[40]

Sun SJ, Meng P, Zhang JS, Shu JH, Zheng N. Differences and sources of CO2 concentration, carbon and oxygen stable isotope composition between inside and outside of a green space system and influencing factors in an urban area. Chin J Appl Ecol, 2015, 26(10): 3000-3010. in Chinese

[41]

Tan ZH, Zhang YP, Yu GR, Sha LQ, Tang JW, Deng XB, Song QH. Carbon balance of a primary tropical seasonal rain forest. J Geophys Res Atmos, 2010, 115(D42009JD012913

[42]

Tian P, Liu SG, Zhao XC, Sun ZL, Yao X, Niu SL, Crowther TW, Wang QK. Past climate conditions predict the influence of nitrogen enrichment on the temperature sensitivity of soil respiration. Commun Earth Environ, 2021, 2251

[43]

Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik Ü, Berbigier P, Loustau D, Guðmundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG. Respiration as the main determinant of carbon balance in European forests. Nature, 2000, 404(6780): 861-865.

[44]

Van Der Heijden MGA, Bardgett RD, Van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett, 2008, 11(3): 296-310.

[45]

Wang R, Sun QQ, Wang Y, Zheng W, Yao LG, Hu YX, Guo SL. Contrasting responses of soil respiration and temperature sensitivity to land use types: cropland vs. apple orchard on the Chinese Loess Plateau. Sci Total Environ, 2018, 621: 425-433.

[46]

Wang B, Zhou Y, Zhang QL. Soil organic carbon and its relationship with other soil physicochemical properties in Larix gmelinii forest. J Ecolo Rural Env, 2021, 37(1): 1208in Chinese

[47]

Wingate L, Ogée J, Burlett R, Bosc A, Devaux M, Grace J, Loustau D, Gessler A. Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration. New Phytol, 2010, 1882): 576-589.

[48]

Xu X, Luo YQ, Zhou JZ. Carbon quality and the temperature sensitivity of soil organic carbon decomposition in a tallgrass prairie. Soil Biol Biochem, 2012, 50: 142-148.

[49]

Xu ZF, Tang SS, Xiong L, Yang WQ, Yin HJ, Tu LH, Wu FZ, Chen LH, Tan B. Temperature sensitivity of soil respiration in China’s forest ecosystems: patterns and controls. Appl Soil Ecol, 2015, 93: 105-110.

[50]

Yakir D, Sternberg LDL. The use of stable isotopes to study ecosystem gas exchange. Oecologia, 2000, 123(3): 297-311.

[51]

Yang Y, Li T, Pokharel P, Liu LX, Qiao JB, Wang YQ, An SS, Chang SX. Global effects on soil respiration and its temperature sensitivity depend on nitrogen addition rate. Soil Biol Biochem, 2022, 174108814

[52]

Yy LV. Study on the root system structure and the soil mechnics mechanism of Larix gmelinii, 2014, Saighan. Inner Mongolia Agricultural University

[53]

Zhang X, Zhang QL, Xu ZH, Wang R, Jian YN, Yang JF, Sun CL, Wang JF. Mechanism of environmental factors regulating water consumption of Larix gmelinii forests. J Soils Sediments, 2021, 21(11): 3590-3606.

[54]

Zhang X, Zhang QL, Sun SJ, Xu ZH, Jian YN, Yang Y, Tian Y, Sa RL, Wang B, Wang F. Carbon exchange characteristics and their environmental effects in the northern forest ecosystem of the Greater Khingan Mountains in China. Sci Total Environ, 2022, 838156056

[55]

Zhang X, Zhang QL, Sun SJ, Wang B. CO2 concentration and the δ13C dynamics in Larix gmelinii ecosystem in response to environmental factors. Sci Silvae Sin, 2023, 59(9): 55-65in Chinese

[56]

Zheng JJ, Huang SY, Jia X, Tian Y, Mu Y, Liu P, Zha TS. Spatial variation and controlling factors of temperature sensitivity of soil respiration in forest ecosystems across China. Chin J Plant Ecol, 2020, 44(6): 687-698. in Chinese

[57]

Zhong Y, Yan WM, Shangguan ZP. The effects of nitrogen enrichment on soil CO2 fluxes depending on temperature and soil properties. Glob Ecol Biogeogr, 2016, 25(4): 475-488.

[58]

Zhou LY, Zhou XH, Zhang BC, Lu M, Luo YQ, Liu LL, Li B. Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis. Glob Chang Biol, 2014, 20(7): 2332-2343.

[59]

Zhu XJ, Yu GR, Wang QF, Gao YN, Zhao XQ, Han SJ, Yan JH. The interaction between components of ecosystem respiration in typical forest and grassland ecosystems. Acta Ecol Sin, 2013, 33(21): 6925-6934. in Chinese

RIGHTS & PERMISSIONS

Northeast Forestry University

PDF

37

Accesses

0

Citation

Detail

Sections
Recommended

/