Climate change, more than management, drives short- and long-term changes in iWUE in a sub-Alpine beech forest

Vincenzo Saponaro , Daniela Dalmonech , Elia Vangi , Paulina F. Puchi , Negar Rezaie , Ettore D’Andrea , Enrico Tomelleri , Alessio Collalti

Journal of Forestry Research ›› 2025, Vol. 37 ›› Issue (1) : 16

PDF
Journal of Forestry Research ›› 2025, Vol. 37 ›› Issue (1) :16 DOI: 10.1007/s11676-025-01942-8
Original Paper
research-article

Climate change, more than management, drives short- and long-term changes in iWUE in a sub-Alpine beech forest

Author information +
History +
PDF

Abstract

The present study aims to determine the potential impact of recent past, present-day and future climate conditions—along with silvicultural interventions—on the “intrinsic Water Use Efficiency” (iWUE). iWUE, defined as the amount of carbon assimilated per unit of water lost through stomata, is a valuable metric that reflects the combined effects of climate change and forest management on carbon and water balance in forest ecosystems. We studied these effects on a European beech (Fagus sylvatica L.) forest, one of the most common tree species in Europe, in a unique pre-Alpine site in Italy subjected to different silvicultural treatments in the past. Therefore, we analyzed iWUE derived from the δ13C measured isotope for the period 2013–2019 under three different silvicultural schemes observed at the study site. Opposite to what was expected, no statistically significant differences were found on iWUE between the treatments (ANOVA: p-value = 0.21) with a mean value for all treatments ranging from 94 μmol mol–1 and 98 μmol mol–1. To explore future dynamics, we used a validated process-based biogeochemical model to simulate iWUE under two climate scenarios (RCP4.5 and RCP8.5) and the same three silvicultural treatments. Again, silvicultural practices showed little effect on iWUE, while differences were evident between climate scenarios and time periods. iWUE increased between the first (2019–2029) and last (2040–2050) decades of simulation by 20.9%, 20.5% and 19.5% for the “Control”, “Traditional” and “Innovative” treatments, respectively. In conclusion, in the past and for the next half-decade, silvicultural treatments, at least at the study site, may not influence much the iWUE of beech forests even if it will increase remarkably under climate change.

Keywords

Intrinsic Water-Use-Efficiency / Tree-rings / Isotopes / Silvicultural treatments / Forest Modelling / Fagus sylvatica L

Cite this article

Download citation ▾
Vincenzo Saponaro, Daniela Dalmonech, Elia Vangi, Paulina F. Puchi, Negar Rezaie, Ettore D’Andrea, Enrico Tomelleri, Alessio Collalti. Climate change, more than management, drives short- and long-term changes in iWUE in a sub-Alpine beech forest. Journal of Forestry Research, 2025, 37(1): 16 DOI:10.1007/s11676-025-01942-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams MA, Buckley TN, Binkley D, Neumann M, Turnbull TL. CO2, nitrogen deposition and a discontinuous climate response drive water use efficiency in global forests. Nat Commun, 2021, 12: 5194

[2]

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag, 2010, 259(4): 660-684.

[3]

Allan RP, Barlow M, Byrne MP, Cherchi A, Douville H, Fowler HJ, Gan TY, Pendergrass AG, Rosenfeld D, Swann ALS, Wilcox LJ, Zolina O. Advances in understanding large-scale responses of the water cycle to climate change. Ann N Y Acad Sci, 2020, 1472(1): 49-75.

[4]

Ammer C. Unraveling the importance of inter- and intraspecific competition for the adaptation of forests to climate change. Progress in botany, 2016, Berlin. Springer345-367. 78

[5]

Amthor JS. The McCree–de wit–penning de vries–thornley respiration paradigms: 30 years later. Ann Bot, 2000, 86(1): 1-20.

[6]

Bacon M. Water use efficiency in plant biology, 2009John Wiley & Sons

[7]

Bayer D, Pretzsch H. Reactions to gap emergence: Norway spruce increases growth while European beech features horizontal space occupation–evidence by repeated 3D TLS measurements. Silva Fenn, 2017, 51(57748

[8]

Boettger T, Haupt M, Knöller K, Weise SM, Waterhouse JS, Rinne KT, Loader NJ, Sonninen E, Jungner H, Masson-Delmotte V, Stievenard M, Guillemin MT, Pierre M, Pazdur A, Leuenberger M, Filot M, Saurer M, Reynolds CE, Helle G, Schleser GH. Wood cellulose preparation methods and mass spectrometric analyses of delta13C, delta18O, and nonexchangeable delta2H values in cellulose, sugar, and starch: an interlaboratory comparison. Anal Chem, 2007, 79(12): 4603-4612.

[9]

Bonan GB, Lawrence PJ, Oleson KW, Levis S, Jung M, Reichstein M, Lawrence DM, Swenson SC. Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J Geophys Res, 2011

[10]

Boncina A, Kadunc A, Robic D. Effects of selective thinning on growth and development of beech (Fagus sylvatica L.) forest stands in south-eastern Slovenia. Ann for Sci, 2007, 64(1): 47-57.

[11]

Boukhris I, Marano G, Dalmonech D, Valentini R, Collalti A (2025) Modeling forest growth under current and future climate. Current Forestry Reports 11(1). https://doi.org/10.1007/s40725-025-00249-5

[12]

Briggs LJ, Shantz HL (1913) The water requirement of plants. In: Bureau of Plant Industry Bulletin (Washington, DC: US Department of Agriculture), pp 282–285.

[13]

Camarero JJ, Gazol A, Sangüesa-Barreda G, Oliva J, Vicente-Serrano SM. To die or not to die: early warnings of tree dieback in response to a severe drought. J Ecol, 2015, 103(1): 44-57.

[14]

Collalti A, Dalmonech D, Vangi E, Marano G, Puchi PF, Morichetti M, Saponaro V, Orrico MR, Grieco E. Monitoring and predicting forest growth and dynamics, 2024, Roma. CNR Edizioni.

[15]

Collalti A, Marconi S, Ibrom A, Trotta C, Anav A, D’Andrea E, Matteucci G, Montagnani L, Gielen B, Mammarella I, Grünwald T, Knohl A, Berninger F, Zhao Y, Valentini R, Santini M. Validation of 3D-CMCC Forest Ecosystem Model (v.5.1) against eddy covariance data for 10 European forest sites. Geosci Model Dev, 2016, 9(2): 479-504.

[16]

Collalti A, Perugini L, Santini M, Chiti T, Nolè A, Matteucci G, Valentini R. A process-based model to simulate growth in forests with complex structure: evaluation and use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy. Ecol Model, 2014, 272: 362-378.

[17]

Collalti A, Thornton PE, Cescatti A, Rita A, Borghetti M, Nolè A, Trotta C, Ciais P, Matteucci G. The sensitivity of the forest carbon budget shifts across processes along with stand development and climate change. Ecol Appl, 2019, 29(2e01837

[18]

Collalti A, Tjoelker MG, Hoch G, Mäkelä A, Guidolotti G, Heskel M, Petit G, Ryan MG, Battipaglia G, Matteucci G, Prentice IC. Plant respiration: controlled by photosynthesis or biomass?. Glob Change Biol, 2020, 263): 1739-1753.

[19]

Collalti A, Trotta C, Keenan TF, Ibrom A, Bond-Lamberty B, Grote R, Vicca S, Reyer CPO, Migliavacca M, Veroustraete F, Anav A, Campioli M, Scoccimarro E, Šigut L, Grieco E, Cescatti A, Matteucci G. Thinning can reduce losses in carbon use efficiency and carbon stocks in managed forests under warmer climate. J Adv Model Earth Syst, 2018, 10(10): 2427-2452.

[20]

Cowan IR, Farquhar GDJennings DH. Stomatal function in relation to leaf metabolism and environment. Integration of activity in the higher plant, 1977, Cambridge. Cambridge University Press471-505

[21]

Cui SY, Xiao YS, Yang YT, Hu ZM, Zheng G. Spatial variations in water use efficiency across global terrestrial ecosystems. CATENA, 2024, 235107670

[22]

Dalmonech D, Marano G, Amthor JS, Cescatti A, Lindner M, Trotta C, Collalti A. Feasibility of enhancing carbon sequestration and stock capacity in temperate and boreal European forests via changes to management regimes. Agric for Meteorol, 2022, 327109203

[23]

Dalmonech D, Vangi E, Chiesi M, Chirici G, Fibbi L, Giannetti F, Marano G, Massari C, Nolè A, Xiao J, Collalti A. Regional estimates of gross primary production applying the Process-Based Model 3D-CMCC-FEM vs. Remote-Sensing multiple datasets. Eur J Remote Sens, 2024, 57(12301657

[24]

Dalsgaard L (2007) Above and below ground gaps: the effects of a small canopy opening on throughfall, soil moisture and tree transpiration in suserup skov, Denmark. Ecol Bull: 81–102.

[25]

De Kauwe MG, Medlyn BE, Tissue DT. To what extent can rising [CO2] ameliorate plant drought stress?. New Phytol, 2021, 2316): 2118-2124.

[26]

De Cinti B, Bombi P, Ferretti F, Cantiani P, Di Salvatore U, Simončič P, Kutnar L, Čater M, Garfi V, Mason F, Matteucci G, (2016) From the experience of LIFE+ ManFor C.BD to the manual of best practices in sustainable forest management. Ital. J Agron 11(s1):1–175. https://doi.org/10.4081/ija.2016.789

[27]

del Campo AD, Otsuki K, Serengil Y, Blanco JA, Yousefpour R, Wei XH. A global synthesis on the effects of thinning on hydrological processes: implications for forest management. For Ecol Manag, 2022, 519120324

[28]

Dolar , del Castillo EM, Serrano-Notivoli R, de Luis Arrillaga M, Novak K, Merela M, Čufar K. Spatial and temporal variation of Fagus sylvatica growth in marginal areas under progressive climate change. Dendrochronologia, 2023, 81126135

[29]

Du BM, Zheng J, Ji HW, Zhu YH, Yuan J, Wen JH, Kang HZ, Liu CJ. Stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry. Ecol Indic, 2021, 121107250

[30]

Du E, De Vries W, Collalti A, De Marco A (2025) Climate warming alters nutrient cycling and its constraint on CO2 fertilization in Global Forests. Curr Clim Change Repo 11(1). https://doi.org/10.1007/s40641-025-00201-6

[31]

Dunkl I, Lovenduski N, Collalti A, Arora VK, Ilyina T, Brovkin V. Gross primary productivity and the predictability of CO2: more uncertainty in what we predict than how well we predict it. Biogeosciences, 2023, 20(16): 3523-3538.

[32]

Farquhar GD, Ehleringer JR, Hubick KT. Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40: 503-537.

[33]

Farquhar GD, O’Leary MH, Berry JA. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct Plant Biol, 1982, 9(2): 121-137.

[34]

Farquhar GD, Richards RA. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct Plant Biol, 1984, 11(6): 539-552.

[35]

Farquhar GD, von Caemmerer S, Berry JA. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980, 149(1): 78-90.

[36]

Fernández-de-Uña L, McDowell NG, Cañellas I, Gea-Izquierdo G. Disentangling the effect of competition, CO2 and climate on intrinsic water-use efficiency and tree growth. J Ecol, 2016, 104(3): 678-690.

[37]

Ferraz SFB, de Paula Lima W, Rodrigues CB. Managing forest plantation landscapes for water conservation. For Ecol Manage, 2013, 301: 58-66.

[38]

Forrester DI, Collopy JJ, Beadle CL, Warren CR, Baker TG. Effect of thinning, pruning and nitrogen fertiliser application on transpiration, photosynthesis and water-use efficiency in a young Eucalyptus nitens plantation. For Ecol Manage, 2012, 266: 286-300.

[39]

Francey RJ, Farquhar GD. An explanation of 13C/12C variations in tree rings. Nature, 1982, 297(5861): 28-31.

[40]

Frank DC, Poulter B, Saurer M, Esper J, Huntingford C, Helle G, Treydte K, Zimmermann NE, Schleser GH, Ahlström A, Ciais P, Friedlingstein P, Levis S, Lomas M, Sitch S, Viovy N, Andreu-Hayles L, Bednarz Z, Berninger F, Boettger T, D‘Alessandro CM, Daux V, Filot M, Grabner M, Gutierrez E, Haupt M, Hilasvuori E, Jungner H, Kalela-Brundin M, Krapiec M, Leuenberger M, Loader NJ, Marah H, Masson-Delmotte V, Pazdur A, Pawelczyk S, Pierre M, Planells O, Pukiene R, Reynolds-Henne CE, Rinne KT, Saracino A, Sonninen E, Stievenard M, Switsur VR, Szczepanek M, Szychowska-Krapiec E, Todaro L, Waterhouse JS, Weigl M. Water-use efficiency and transpiration across European forests during the Anthropocene. Nat Clim Change, 2015, 5(6): 579-583.

[41]

Gao Y, He ZB, Zhu X, Chen LF, Du J. Light thinning can improve soil water availability and water holding capacity of plantations in alpine mountains. Front Plant Sci, 2022, 131032057

[42]

Gessler A, Cailleret M, Joseph J, Schönbeck L, Schaub M, Lehmann M, Treydte K, Rigling A, Timofeeva G, Saurer M. (2018) Drought induced tree mortality – a tree-ring isotope based conceptual model to assess mechanisms and predispositions. The New Phytologist 219(2):485–490. https://www.jstor.org/stable/90022581

[43]

Gessler A, Ferrio JP, Hommel R, Treydte K, Werner RA, Monson RK. Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol, 2014, 34(8): 796-818.

[44]

Goetz RU, Xabadia A, Calvo E. Optimal forest management in the presence of intraspecific competition. Math Popul Stud, 2011, 18(3): 151-171.

[45]

Granier A, Bréda N, Longdoz B, Gross P, Ngao J. Ten years of fluxes and stand growth in a young beech forest at Hesse, North-eastern France. Ann for Sci, 2008, 65(7704

[46]

Grant GE, Tague CL, Allen CD. Watering the forest for the trees: an emerging priority for managing water in forest landscapes. Front Ecol Environ, 2013, 116): 314-321.

[47]

Hammond WM, Yu KL, Wilson LA, Will RE, Anderegg WRL, Adams HD. Dead or dying? Quantifying the point of no return from hydraulic failure in drought-induced tree mortality. New Phytol, 2019, 223(4): 1834-1843.

[48]

Holmes CD. Air pollution and forest water use. Nature, 2014, 507(7491): E1-E2.

[49]

Hu ZY, Dai QH, Li HY, Yan YJ, Zhang Y, Yang X, Zhang XY, Zhou H, Yao YW. Response of ecosystem water-use efficiency to global vegetation greening. CATENA, 2024, 239107952

[50]

IPCC (2023) In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp 35–115 https://doi.org/10.59327/IPCC/AR6-9789291691647

[51]

Jarvis PG. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond B Biol Sci, 1976, 273(927): 593-610.

[52]

Kattge J, Knorr W. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant Cell Environ, 2007, 30(9): 1176-1190.

[53]

Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 2013, 499(7458): 324-327.

[54]

Kotlarski S, Gobiet A, Morin S, Olefs M, Rajczak J, Samacoïts R. 21st century alpine climate change. Clim Dyn, 2023, 60(1): 65-86.

[55]

Lavergne A, Graven H, De Kauwe MG, Keenan TF, Medlyn BE, Prentice IC. Observed and modelled historical trends in the water-use efficiency of plants and ecosystems. Glob Change Biol, 2019, 25(7): 2242-2257.

[56]

Leuschner C. Drought response of European beech (Fagus sylvatica L.)—a review. Perspect Plant Ecol Evol Syst, 2020, 47125576

[57]

Linares JC, Camarero JJ. From pattern to process: linking intrinsic water-use efficiency to drought-induced forest decline. Glob Change Biol, 2012, 18(3): 1000-1015.

[58]

Mahnken M, Cailleret M, Collalti A, Trotta C, Biondo C, D’Andrea E, Dalmonech D, Marano G, Mäkelä A, Minunno F, Peltoniemi M, Trotsiuk V, Nadal-Sala D, Sabaté S, Vallet P, Aussenac R, Cameron DR, Bohn FJ, Grote R, Augustynczik ALD, Yousefpour R, Huber N, Bugmann H, Merganičová K, Merganic J, Valent P, Lasch-Born P, Hartig F, del Vega Valle ID, Volkholz J, Gutsch M, Matteucci G, Krejza J, Ibrom A, Meesenburg H, Rötzer T, van der Maaten-Theunissen M, van der Maaten E, Reyer CPO. Accuracy, realism and general applicability of European forest models. Glob Change Biol, 2022, 28(23): 6921-6943.

[59]

Marconi S, Chiti T, Nolè A, Valentini R, Collalti A. The role of respiration in estimation of net carbon cycle: coupling soil carbon dynamics and canopy turnover in a novel version of 3D-CMCC forest ecosystem model. Forests, 2017, 8(6): 220.

[60]

Márquez DA, Busch FA. The interplay of short-term mesophyll and stomatal conductance responses under variable environmental conditions. Plant Cell Environ, 2024, 479): 3393-3410.

[61]

Martín-Benito D, Del Río M, Heinrich I, Helle G, Cañellas I. Response of climate-growth relationships and water use efficiency to thinning in a Pinus nigra afforestation. For Ecol Manag, 2010, 259(5): 967-975.

[62]

McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. New Phytol, 2008, 178(4): 719-739.

[63]

Merino A, Real C, Álvarez-González JG, Rodríguez-Guitián MA. Forest structure and C stocks in natural Fagus sylvatica forest in southern Europe: the effects of past management. For Ecol Manag, 2007, 250(3): 206-214.

[64]

Morichetti M, Vangi E, Collalti A. Predicted future changes in the mean seasonal carbon cycle due to climate change. Forests, 2024, 15(7): 1124.

[65]

Niccoli F, Danise T, Innangi M, Pelleri F, Manetti MC, Mastrolonardo G, Certini G, Fioretto A, Battipaglia G. Tree species composition in mixed plantations influences plant growth, intrinsic water use efficiency and soil carbon stock. Forests, 2021, 12(9): 1251.

[66]

Nigrelli G, Chiarle M. 1991–2020 climate normal in the European Alps: focus on high-elevation environments. J Mt Sci, 2023, 20(8): 2149-2163.

[67]

Noce S, Collalti A, Valentini R, Santini M. Hot spot maps of forest presence in the Mediterranean basin. Iforest, 2016, 9(5): 766-774.

[68]

Nolè A, Collalti A, Borghetti M, Chiesi M, Chirici G, Magnani F, Marras S, Maselli F, Sirca C, Spano D, Valentini R. The role of managed forest ecosystems: a modeling based approach. The greenhouse gas balance of Italy, 2014, Berlin. Springer71-85.

[69]

Pilli R, Alkama R, Cescatti A, Kurz WA, Grassi G. The European forest carbon budget under future climate conditions and current management practices. Biogeosciences, 2022, 19(13): 3263-3284.

[70]

Pregitzer KS, Euskirchen ES. Carbon cycling and storage in world forests: biome patterns related to forest age. Glob Change Biol, 2004, 10(12): 2052-2077.

[71]

Puchi PF, Dalmonech D, Castagneri D, Genovese G, Helgason W, Khomik M, Brilli L, Collalti A (2026) Decoding carbon allocation in boreal forests: Integrating multi-proxy observations and process-based modelling. https://doi.org/10.1016/j.agrformet.2025.110923

[72]

Puchi PF, Dalmonech D, Vangi E, Battipaglia G, Tognetti R, Collalti A. Contrasting patterns of water use efficiency and annual radial growth among European beech forests along the Italian peninsula. Sci Rep, 2024, 14: 6526

[73]

Raffa M, Adinolfi M, Reder A, Marras GF, Mancini M, Scipione G, Santini M, Mercogliano P. Very high resolution projections over Italy under different CMIP5 IPCC scenarios. Sci Data, 2023, 10(1): 238.

[74]

Rezaie N, D’Andrea E, Bräuning A, Matteucci G, Bombi P, Lauteri M. Do atmospheric CO2 concentration increase, climate and forest management affect iWUE of common beech? Evidences from carbon isotope analyses in tree rings. Tree Physiol, 2018, 38(8): 1110-1126.

[75]

Saponaro V, De Cáceres M, Dalmonech D, D’Andrea E, Vangi E, Collalti A. Assessing the combined effects of forest management and climate change on carbon and water fluxes in European beech forests. For Ecosyst, 2025, 12100290

[76]

Saurer M, Spahni R, Frank DC, Joos F, Leuenberger M, Loader NJ, McCarroll D, Gagen M, Poulter B, Siegwolf RTW, Andreu-Hayles L, Boettger T, Dorado Liñán I, Fairchild IJ, Friedrich M, Gutierrez E, Haupt M, Hilasvuori E, Heinrich I, Helle G, Grudd H, Jalkanen R, Levanič T, Linderholm HW, Robertson I, Sonninen E, Treydte K, Waterhouse JS, Woodley EJ, Wynn PM, Young GHF. Spatial variability and temporal trends in water-use efficiency of European forests. Glob Change Biol, 2014, 20(12): 3700-3712.

[77]

Scartazza A, Di Baccio D, Bertolotto P, Gavrichkova O, Matteucci G. Investigating the European beech (Fagus sylvatica L.) leaf characteristics along the vertical canopy profile: leaf structure, photosynthetic capacity, light energy dissipation and photoprotection mechanisms. Tree Physiol, 2016, 36(9): 1060-1076.

[78]

Seibt U, Rajabi A, Griffiths H, Berry JA. Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia, 2008, 155(3): 441-454.

[79]

Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ, 2014, 37(1): 153-161.

[80]

Shinozaki K, Yoda K, Hozumi K, Kira T. A quantitative analysis of plant form-the pipe model theory, I basic analyses. Jpn J Ecol, 1964, 4: 97-105.

[81]

Shinozaki K, Yoda K, Hozumi K, Kira T. A quantitative analysis of plant form-the pipe model theory. II. Further evidence of the theory and its application in forest ecology. Jpn J Ecol, 1964, 14: 133-139.

[82]

Sulman BN, Roman DT, Yi K, Wang LX, Phillips RP, Novick KA. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. Geophys Res Lett, 2016, 43(18): 9686-9695.

[83]

Sun Y, Gu LH, Dickinson RE, Norby RJ, Pallardy SG, Hoffman FM. Impact of mesophyll diffusion on estimated global land CO2 fertilization. Proc Natl Acad Sci U S A, 2014, 111(44): 15774-15779.

[84]

Szwagrzyk J, Szewczyk J, Maciejewski Z. Shade-tolerant tree species from temperate forests differ in their competitive abilities: a case study from Roztocze, south-eastern Poland. For Ecol Manag, 2012, 282: 28-35.

[85]

Testolin R, Dalmonech D, Marano G, Bagnara M, D’Andrea E, Matteucci G, Noce S, Collalti A. Simulating diverse forest management options in a changing climate on a Pinus nigra subsp. laricio plantation in Southern Italy. Sci Total Environ, 2023, 857159361

[86]

Upreti H, Ojha CSP. Estimation of relative humidity and dew point temperature using limited meteorological data. J Irrig Drain Eng, 2017, 143(9): 05017005.

[87]

Vangi E, Dalmonech D, Cioccolo E, Marano G, Bianchini L, Puchi PF, Grieco E, Cescatti A, Colantoni A, Chirici G, Collalti A. Stand age diversity (and more than climate change) affects forests’ resilience and stability, although unevenly. J Environ Manag, 2024, 366121822

[88]

Vangi E, Dalmonech D, Morichetti M, Grieco E, Giannetti F, D’Amico G, Nakhavali M, Chirici G, Collalti A. Stand age and climate change effects on carbon increments and stock dynamics. Forests, 2024, 15(71120

[89]

Vangi E, Dalmonech D, D’Amico G, Grieco E, Morichetti M, Puchi P F, Francini S, Fares S, Giannetti F, Corona P, Barbetti R, Chirici G, Collalti A (2025) Monitoring forest attributes, C-fluxes, and C-stocks using the process-based model 3D-CMCC-FEM at the National level. Ecol Inform 92:103489. https://doi.org/10.1016/j.ecoinf.2025.103489

[90]

van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK. The representative concentration pathways: an overview. Clim Change, 2011, 10915

[91]

Yu GR, Song X, Wang QF, Liu YF, Guan DX, Yan JH, Sun XM, Zhang LM, Wen XF. Water-use efficiency of forest ecosystems in Eastern China and its relations to climatic variables. New Phytol, 2008, 1774): 927-937.

[92]

Yuan WP, Zheng Y, Piao SL, Ciais P, Lombardozzi D, Wang YP, Ryu Y, Chen GX, Dong WJ, Hu ZM, Jain AK, Jiang CY, Kato E, Li SH, Lienert S, Liu SG, Nabel JEMS, Qin ZC, Quine T, Sitch S, Smith WK, Wang F, Wu CY, Xiao ZQ, Yang S. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci Adv, 2019, 58eaax1396

[93]

Zhang ZQ, Zhang L, Xu H, Creed IF, Blanco JA, Wei XH, Sun G, Asbjornsen H, Bishop K. Forest water-use efficiency: effects of climate change and management on the coupling of carbon and water processes. For Ecol Manag, 2023, 534120853

[94]

Zhao JX, Feng HZ, Xu TR, Xiao JF, Guerrieri R, Liu SM, Wu XC, He XL, He XP. Physiological and environmental control on ecosystem water use efficiency in response to drought across the Northern Hemisphere. Sci Total Environ, 2021, 758143599

Funding

Consiglio Nazionale Delle Ricerche (CNR)

RIGHTS & PERMISSIONS

The Author(s)

PDF

32

Accesses

0

Citation

Detail

Sections
Recommended

/