High-resolution climate downscaling using terrain features and global circulation models: applications for species suitability in the management of plantation forestry
Jaco-Pierre van der Merwe , Elane van Heerden , Ilaria Germishuizen , Nanette Christie , James Kok , Thandekile Ncongwane , Katharine Spencer , Mandlakazi Melane , Shawn D. Mansfield , Yolandi Ernst
Journal of Forestry Research ›› 2026, Vol. 37 ›› Issue (1) : 3
High-resolution climate downscaling using terrain features and global circulation models: applications for species suitability in the management of plantation forestry
The forestry landscape is being climatically redefined due to global warming. Limited knowledge is available on whether introduced pine species will be viable for plantation forestry in South Africa. Existing global circulation models were scaled down to a finer resolution by incorporating historical climate data, global positioning, and terrain conditions (terrain scaling). Terrain scaling of mean annual maximum temperature (MAT-max), minimum temperature (MAT-min), and median annual precipitation rainfall (MAP-median) was statistically significant, achieving R2 values of 0.70, 0.78 and 0.90, respectively. Decadal climate change was analyzed for the period ranging from 2020 to 2060. Future decadal temperatures were found to increase and were generally greater in high-altitude regions compared to low-altitude regions. MAT-max increased by up to 1.7 °C and MAT-min by 0.4 °C by 2060. MAP-median decreased by up to 10% by 2060, with high-rainfall areas in low-altitude regions being more greatly impacted. Climate suitability was determined for Pinus elliottii, P. taeda, P. patula and the hybrid P. patula × P. tecunumanii by harnessing existing species-specific climate threshold models for the region. Current and future conditions were found to be most suitable for P. patula × P. tecunumanii plantations. Isolated climate niches with warmer, drier conditions were best suited for P. patula plantations, while warm, humid conditions favoured P. elliottii plantations. None of the current and future climatic conditions were suitable for P. taeda plantations. A similar approach can be applied to forestry regions globally to enable pre-emptive tree breeding and the introduction of new forest species due to climate change.
Climate change / Downscaling / GCM / Pinus / Plantation forestry
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
Forestry economics services CC (FES) (2020) Report on commercial timber resources and primary roundwood processing in South Africa. Department of agriculture, forestry and fisheries, Pretoria |
| [30] |
Forests and people (2012) Investigation of working conditions of forestry workers in South Africa. Department of agriculture, forestry and fisheries, Pretoria |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
Hijmans R (2023) Raster: geographic data analysis and modeling. R package version 36–23. https://CRAN.R-project.org/package=raster |
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
Koenker R (2023) Quantreg: quantile regression_. R package version 5.97. https://CRAN.R-project.org/package=quantreg |
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
R Core Team (2017) R: A language and environment for statistical computing. R foundation for statistical computing. https://www.R-project.org |
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
Northeast Forestry University
/
| 〈 |
|
〉 |