Range shifts of four Larix species across a three-dimensional geographic gradient in response to climate change

Zhi Zhang , Wenqiang Gao , Xiangdong Lei , Jiejie Sun

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 138

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) :138 DOI: 10.1007/s11676-025-01936-6
Original Paper
research-article

Range shifts of four Larix species across a three-dimensional geographic gradient in response to climate change

Author information +
History +
PDF

Abstract

Climate warming is significantly altering the distribution of tree species, which holds crucial implications for China’s Larix species as they are important afforestation efforts. Understanding their optimal habitats and environmental constraints is vital for predicting range shifts and guiding adaptive forest management. Previous studies prioritized changing climate impacts on horizontal range shifts of Larix, neglecting the influence of soil factors and range shift along altitudinal gradients. To address this, we applied an optimized MaxEnt model to assess current and future SSP126/SSP585 scenarios, three-dimensional habitat suitability (latitude, longitude, altitude) for four major Larix species (L. principis-rupprechtii, L. gmelinii, L. kaempferi, L. olgensis), while identifying key environmental drivers. Our results indicate that elevation and extreme moisture conditions universally constrain their distribution. Soil chemistry properties exhibited species-specific influences: cation exchange capacity critically shaped L. principis-rupprechtii and L. gmelinii ranges, whereas exchangeable aluminum determined L. kaempferi and L. olgensis distribution. Under future climate scenarios, habitat areas show divergent trajectories—L. principis-rupprechtii maximum gains 5.1% under SSP126, while L. kaempferi maximum expands 15.1%. Conversely, SSP585 triggered a 3.7% decline for L. gmelinii during the 2040s − 2100s, and L. olgensis faces a net reduction to 0.4% by 2100s despite transient gains. Spatially, three species (L. kaempferi, L. gmelinii, L. olgensis) shifted northward, while L. principis-rupprechtii migrated northwest. All species distribution ascended altitudinally reflecting thermal adaptation strategies. These multidimensional insights enable targeted species selection for climate-resilient afforestation and underscore the need for soil-inclusive management planning.

Keywords

Climate change / MaxEnt model / Elevation / Cation exchange capacity / Exchangeable aluminum

Cite this article

Download citation ▾
Zhi Zhang, Wenqiang Gao, Xiangdong Lei, Jiejie Sun. Range shifts of four Larix species across a three-dimensional geographic gradient in response to climate change. Journal of Forestry Research, 2025, 36(1): 138 DOI:10.1007/s11676-025-01936-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albrich K, Rammer W, Seidl R. Climate change causes critical transitions and irreversible alterations of mountain forests. Glob Change Biol, 2020, 26(7): 4013-4027.

[2]

An X, Huang TS, Zhang HY, Yue JJ, Zhao BJ. Prediction of potential distribution patterns of three Larix species on Qinghai-Tibet Plateau under future climate scenarios. Forests, 2023, 14(5): 1058.

[3]

Bañares-de-Dios G, Macía MJ, de Carvalho GM, Arellano G, Cayuela L. Soil and climate drive floristic composition in tropical forests: a literature review. Front Ecol Evol, 2022, 10. 866905

[4]

Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. Impacts of climate change on the future of biodiversity. Ecol Lett, 2012, 15(4): 365-377.

[5]

Bohl CL, Kass JM, Anderson RP. A new null model approach to quantify performance and significance for ecological niche models of species distributions. J Biogeogr, 2019, 46(6): 1101-1111.

[6]

Cetin IZ, Ozel HB, Varol T, Canturk U, Sevik H. Climate change impacts on Taxus baccata distribution and conservation. J Forestry Res, 2025, 36: 95.

[7]

Chen ML, Han HR. Response of four common tree species suitable areas to climate change in the Loess Plateau region of northern China. J Beijing for Univ, 2023, 45(3): 21-33(in Chinese)

[8]

Chen KY, Wang B, Chen C, Zhou GY. Maxent modeling to predict the current and future distribution of Pomatosace filicula under climate change scenarios on the Qinghai-Tibet Plateau. Plants, 2022, 11(5): 670.

[9]

Dyderski MK, Paź-Dyderska S, Jagodziński AM, Puchałka R. Shifts in native tree species distributions in Europe under climate change. J Environ Manag, 2025, 373. 123504

[10]

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib, 2011, 17(1): 43-57.

[11]

Fick SE, Hijmans RJ. Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol, 2017, 37(12): 4302-4315.

[12]

Frivold LH, Frank J. Growth of mixed birch-coniferous stands in relation to pure coniferous stands at similar sites in south-eastern Norway. Scand J for Res, 2002, 17(2): 139-149.

[13]

Fu ZH, Zhan QH, Lenoir J, Wang SW, Qian H, Yang JM, Sun WX, Mbuni YM, Ngumbau VM, Hu GW, Yan X, Wang QF, Chen SC, Zhou YD (2024) Climate change drives plant diversity attrition at the summit of Mount Kenya. New Phytol 20344. https://doi.org/10.1111/nph.20344

[14]

Gao ML, Zhao GH, Zhang SN, Wang ZR, Wen XY, Liu L, Zhang C, Tie N, Sa RL. Priority conservation area of Larix gmelinii under climate change: application of an ensemble modeling. Front Plant Sci, 2023, 14: 1177307.

[15]

Gebrewahid Y, Abrehe S, Meresa E, Eyasu G, Abay K, Gebreab G, Kidanemariam K, Adissu G, Abreha G, Darcha G. Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change in Northern Ethiopia. Ecol Process, 2020, 9(1. 6

[16]

Hu DY, Zhang D, Bo MS, Liu P, Huang LP, Gao J, Zhang TW, Gu XA (2024) Potential distribution patterns and driving factors of Larix sibirica under climate change scenarios. J Northeast For Univ 52(1): 38–45. (in Chinese)https://doi.org/10.13759/j.cnki.dlxb.2024.01.005

[17]

Kaky E, Nolan V, Alatawi A, Gilbert F. A comparison between ensemble and MaxEnt species distribution modelling approaches for conservation: a case study with Egyptian medicinal plants. Ecol Inform, 2020, 60. 101150

[18]

Leng WF, He HS, Bu RC, Hu YM (2007) Sensitivity analysis of the impacts of climate change on potential distribution of three larch (Larix) species in northeastern China. Chin J Plant Ecol 31(5): 825–833.(in Chinese)https://doi.org/10.17521/cjpe.2007.0104

[19]

Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H. A significant upward shift in plant species optimum elevation during the 20th century. Science, 2008, 320(5884): 1768-1771.

[20]

Li F, Zhou GS, Cao MC. Responses of Larix gmelinii geographical distribution to future climate change: a simulation study. Ying Yong Sheng Tai Xue Bao, 2006, 17(12): 2255-2260(in Chinese)

[21]

Liu Q, Xue TT, Zhang XX, Yang XD, Qin F, Zhang WD, Wu L, Bussmann RW, Yu SX. Distribution and conservation of near threatened plants in China. Plant Divers, 2023, 45(3): 272-283.

[22]

Liu Y, Miao C, Wang HS (2023b) Influence of climate change on distribution of suitable areas of Larix plantation in China. Acta Ecol Sin 43(23): 9686–9698. (in Chinese)https://doi.org/10.20103/j.stxb.202205101305

[23]

Luo S, Yu J, Tong RJ (2025) Research on accelerated geospatial computing methods for species distribution prediction—a case study of cold-water corals. J Guizhou Univ Nat Sci 42(1): 34–41. (in Chinese)https://doi.org/10.15958/j.cnki.gdxbzrb.2025.01.06

[24]

Maharjan SK, Sterck FJ, Raes N, Poorter L. Temperature and soils predict the distribution of plant species along the Himalayan elevational gradient. J Trop Ecol, 2022, 38(2): 58-70.

[25]

McKenzie D, Peterson DW, Peterson DL, Thornton PE. Climatic and biophysical controls on conifer species distributions in mountain forests of Washington State, USA. J Biogeogr, 2003, 30(7): 1093-1108.

[26]

Merow C, Smith MJ, Silander JAJr. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography, 2013, 36(10): 1058-1069.

[27]

Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP. ENmeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Meth Ecol Evol, 2014, 5(11): 1198-1205.

[28]

Niu K, Zhao LJ, Zhang Y, Wang Z, Wang Z, Yang H. Prediction of potential sorghum suitability distribution in China based on maxent model. Am J Plant Sci, 2022, 13(6): 856-871.

[29]

Ols C, Hervé JC, Bontemps JD. Recent growth trends of conifers across Western Europe are controlled by thermal and water constraints and favored by forest heterogeneity. Sci Total Environ, 2020, 742. 140453

[30]

Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 2003, 421(6918): 37-42.

[31]

Pauchard A, Milbau A, Albihn A, Alexander J, Burgess T, Daehler C, Englund G, Essl F, Evengård B, Greenwood GB, Haider S, Lenoir J, McDougall K, Muths E, Nuñez MA, Olofsson J, Pellissier L, Rabitsch W, Rew LJ, Robertson M, Sanders N, Kueffer C. Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biol Invasions, 2016, 18(2): 345-353.

[32]

Phillips SJ, Dudík M. Modeling of species distributions with maxent: new extensions and a comprehensive evaluation. Ecography, 2008, 31(2): 161-175.

[33]

Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model, 2006, 190(3–4): 231-259.

[34]

Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. Opening the black box: an open-source release of Maxent. Ecography, 2017, 40(7): 887-893.

[35]

Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric for Meteorol, 2013, 169: 156-173.

[36]

Sarris D, Christodoulakis D. Topographic and climatic effects on Pinus halepensis s.l. growth at its drought tolerance margins under climatic change. J Forestry Res, 2024, 35. 102

[37]

Shangguan W, Dai YJ, Liu BY, Zhu AX, Duan QY, Wu LZ, Ji DY, Ye AZ, Yuan H, Zhang Q, Chen DD, Chen M, Chu JT, Dou YJ, Guo JX, Li HQ, Li JJ, Liang L, Liang X, Liu HP, Liu SY, Miao CY, Zhang YZ. A China data set of soil properties for land surface modeling. J Adv Model Earth Syst, 2013, 5(2): 212-224.

[38]

Shen JP, Chen DS, Hong YF, Sun XM, Zhang SG. Prediction on potential distribution areas of Larix kaempferi in China based on MaxEnt model. J Plant Resour Environ, 2019, 28(3): 19-25(in Chinese)

[39]

Stone L, Strong C, Bai H, Reichler T, McCabe G, Brooks PD. Atlantic-Pacific influence on western U.S. hydroclimate and water resources. NPJ Clim Atmos Sci, 2023, 6. 139

[40]

Subedi SC, Drake S, Adhikari B, Coggeshall MV. Climate-change habitat shifts for the vulnerable endemic oak species (Quercus arkansana Sarg.). J Forestry Res, 2024, 35. 23

[41]

Townsend Peterson A, Papeş M, Eaton M. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography, 2007, 30(4): 550-560.

[42]

Trindade WCF, Santos MH, Artoni RF. Climate change shifts the distribution of vegetation types in South Brazilian hotspots. Reg Environ Change, 2020, 20(3): 90.

[43]

Villén-Peréz S, Heikkinen J, Salemaa M, Mäkipää R. Global warming will affect the maximum potential abundance of boreal plant species. Ecography, 2020, 43(6): 801-811.

[44]

Warren DL, Seifert SN. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl, 2011, 21(2): 335-342.

[45]

Warren DL, Glor RE, Turelli M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 2008, 62(11): 2868-2883.

[46]

Xu WB, Svenning JC, Chen GK, Zhang MG, Huang JH, Chen B, Ordonez A, Ma KP. Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China. Proc Natl Acad Sci U S A, 2019, 116(52): 26674-26681.

[47]

Xu WH, Rhemtulla JM, Luo DW, Wang TL. Common drivers shaping niche distribution and climate change responses of one hundred tree species. J Environ Manage, 2024, 370. 123074

[48]

Yi YJ, Cheng X, Yang ZF, Zhang SH. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol Eng, 2016, 92: 260-269.

[49]

Zhang JM, Song ML, Li ZJ, Peng XY, Su S, Li B, Xu XQ, Wang W. Effects of climate change on the distribution of Akebia quinata. Front Ecol Evol, 2021, 9. 752682

[50]

Zhang L, van Riemsdijk I, Liu M, Liao ZY, Cavé-Radet A, Bi JW, Wang SY, Zhao YJ, Cao PP, Parepa M, Bossdorf O, Salmon A, Aïnouche M, Ju RT, Wu JH, Richards CL, Li B. Biogeography of a global plant invader: from the evolutionary history to future distributions. Glob Change Biol, 2024, 30(12. e17622

RIGHTS & PERMISSIONS

Northeast Forestry University

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/