Effects of climate change on the richness distribution of Phyllostachys species in China

Qianyue Yang , Xingzhuang Ye , Gaohao Guo , Long Li

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 132

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) :132 DOI: 10.1007/s11676-025-01926-8
Original Paper
research-article

Effects of climate change on the richness distribution of Phyllostachys species in China

Author information +
History +
PDF

Abstract

Climate change disrupts the distribution of species and restructures their richness patterns. The genus of Asian bamboo, Phyllostachys, possesses significant ecological and economic values, and represents the most species-rich genus in the Bambusoideae subfamily. Based on the distribution data of 46 species and 20 environmental variables, we used the MaxEnt model combined with ArcGIS calculations to simulate current and future potential richness distributions under three distinct CO2 emission scenarios. The results showed that the MaxEnt model had a good predictive ability, with a mean area under the working characteristic curve (AUC value) of 0.91 for all species. The main environmental variables that impacted the future distribution of most Phyllostachys species were elevation, variations of seasonal precipitation, and mean diurnal range. Phyllostachys species are currently concentrated in southeastern China. Under future climate projections, 18 species exhibited significant habitat contraction across three or more future climate scenarios, but suitable habitats for other species will expand. This enhancement is most pronounced under the extreme climate scenario (2090s-SSP585), primarily driven by high species gains contributing to elevated turnover values across scenarios. The center of maximum richness will progressively shift southwestward over time. Predictive modeling of Phyllostachys richness distribution dynamics under climate change enhances our understanding of its biogeography and informs strategic introduction programs to bamboo management and augments China's carbon sequestration capacity.

Keywords

Climate change / MaxEnt model / Richness distribution pattern / Phyllostachys

Cite this article

Download citation ▾
Qianyue Yang, Xingzhuang Ye, Gaohao Guo, Long Li. Effects of climate change on the richness distribution of Phyllostachys species in China. Journal of Forestry Research, 2025, 36(1): 132 DOI:10.1007/s11676-025-01926-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aguirre-Gutiérrez J, Díaz S, Rifai SW, Corral-Rivas JJ, Nava-Miranda MG, González-M R, Hurtado-M AB, Revilla NS, Vilanova E, Almeida E, Almeida de Oliveira E, Alvarez-Davila E, Alves LF, de Andrade ACS, Lola da Costa AC, Vieira SA, Aragão L, Arets E, Aymard C GA, Baccaro F, Bakker YV, Baker TR, Bánki O, Baraloto C, de Camargo PB, Berenguer E, Blanc L, Bonal D, Bongers F, Bordin KM, Brienen R, Brown F, Prestes NCCS, Castilho CV, Ribeiro SC, de Souza FC, Comiskey JA, Valverde FC, Müller SC, da Costa Silva R, do Vale JD, de Andrade Kamimura V, de Oliveira Perdiz R, Del Aguila Pasquel J, Derroire G, Di Fiore A, Disney M, Farfan-Rios W, Fauset S, Feldpausch TR, Ramos RF, Llampazo GF, Martins VF, Fortunel C, Cabrera KG, Barroso JG, Hérault B, Herrera R, Honorio Coronado EN, Huamantupa-Chuquimaco I, Pipoly JJ, Zanini KJ, Jiménez E, Joly CA, Kalamandeen M, Klipel J, Levesley A, Oviedo WL, Magnusson WE, Dos Santos RM, Marimon BS, Marimon-Junior BH, de Almeida Reis SM, Melo Cruz OA, Mendoza AM, Morandi P, Muscarella R, Nascimento H, Neill DA, Menor IO, Palacios WA, Palacios-Ramos S, Pallqui Camacho NC, Pardo G, Pennington RT, de Oliveira Pereira L, Pickavance G, Picolotto RC, Pitman NCA, Prieto A, Quesada C, Ramírez-Angulo H, Réjou-Méchain M, Correa ZR, Reyna Huaymacari JM, Rodriguez CR, Rivas-Torres G, Roopsind A, Rudas A, Salgado Negret B, van der Sande MT, Santana FD, Maës Santos FA, Bergamin RS, Silman MR, Silva C, Espejo JS, Silveira M, Souza FC, Sullivan MJP, Swamy V, Talbot J, Terborgh JJ, van der Meer PJ, van der Heijden G, van Ulft B, Martinez RV, Vedovato L, Vleminckx J, Vos VA, Wortel V, Zuidema PA, Zwerts JA, Laurance SGW, Laurance WF, Chave J, Dalling JW, Barlow J, Poorter L, Enquist BJ, Ter Steege H, Phillips OL, Galbraith D, Malhi Y (2025) Tropical forests in the Americas are changing too slowly to track climate change. Science. https://doi.org/10.1126/science.adl5414

[2]

Akinlabi ET, Anane-Fenin K, Akwada DR. Bamboo. Springer International Publishing, 2017

[3]

Anderson JT, DeMarche ML, Denney DA, Breckheimer I, Santangelo J, Wadgymar SM. Adaptation and gene flow are insufficient to rescue a montane plant under climate change. Sci, 2025, 388(6746): 525-531

[4]

Assis J, Fernández Bejarano SJ, Salazar VW, Schepers L, Gouvêa L, Fragkopoulou E, Leclercq F, Vanhoorne B, Tyberghein L, Serrão EA, Verbruggen H, De Clerck O. Bio-oracle v3.0. pushing marine data layers to the CMIP6 earth system models of climate change research. Glob Ecol Biogeogr, 2024, 33(4 e13813

[5]

Chalopin D, Clark LG, Wysocki WP, Park M, Duvall MR, Bennetzen JL. Integrated genomic analyses from low-depth sequencing help resolve phylogenetic incongruence in the bamboos (Poaceae: Bambusoideae). Front Plant Sci, 2021, 12 725728

[6]

Chen M, Guo L, Ramakrishnan M, Fei ZJ, Vinod KK, Ding YL, Jiao C, Gao ZP, Zha RF, Wang CY, Gao ZM, Yu F, Ren GD, Wei Q. Rapid growth of Moso bamboo (Phyllostachys edulis): cellular roadmaps, transcriptome dynamics, and environmental factors. Plant Cell, 2022, 34(10): 3577-3610

[7]

Chen Y, Yu F, Guo C, Yang G, Zhang W. Prediction and analysis of global potential suitable areas for Phyllostachys edulis based on MaxEnt ecological niche model. World Bamboo and Rattan, 2024, 22(5): 47-58(in Chinese)

[8]

Chiti T, Blasi E, Chiriacò MV. Carbon sequestration in a bamboo plantation: a case study in a Mediterranean area. J Forestry Res, 2024, 35(1): 51

[9]

Doser JW, Kéry M, Saunders SP, Finley AO, Bateman BL, Grand J, Reault S, Weed AS, Zipkin EF. Guidelines for the use of spatially varying coefficients in species distribution models. Glob Ecol Biogeogr, 2024, 33(4 e13814

[10]

Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. Ann Statist, 2004, 32(2407-499

[11]

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib, 2011, 17(1): 43-57

[12]

Gao ZM. Genetic basis of moso bamboo breeding and mining of genetic factors for plastic substitute traits. World Bamboo Rattan, 2025, 23(1): 1-9(in Chinese)

[13]

Geng BJ, Wang ZP (1996) Phyllostachys. In: Flora reipublicae popularis sinicae. Science Press, Beijing, pp 243–244

[14]

Gómez-González S, Miranda A, Hoyos-Santillan J, Lara A, Moraga P, Pausas JG. Afforestation and climate mitigation: lessons from Chile. Trends Ecol Evol, 2024, 39(1): 5-8

[15]

Graham MH. Confronting multicollinearity in ecological multiple regression. Ecology, 2003, 84(11): 2809-2815

[16]

Greco S, Molari L, Valdrè G, Garcia JJ. Multilevel analysis of six species of Phyllostachys bamboo and Arundo donax: preliminary survey on Italian grown stands. Wood Sci Technol, 2024, 58(3): 1025-1049

[17]

Grombone-Guaratini M, Gaspar M, Oliveira V, Torres M, do Nascimento A, Aidar M. Atmospheric CO2 enrichment markedly increases photosynthesis and growth in a woody tropical bamboo from the Brazilian Atlantic Forest. N Z J Bot, 2013, 51(4): 275-285

[18]

Gu R, Wei SP, Li JR, Zheng SH, Li ZT, Liu GL, Fan SH. Predicting the impacts of climate change on the geographic distribution of moso bamboo in China based on biomod2 model. Eur J for Res, 2024, 143(5): 1499-1512

[19]

Guo Q, Yang G, Du T, Shi J. Carbon character of Chinese bamboo forest. World Bamboo and Rattan, 2005, 3: 25-28(in Chinese)

[20]

Haesen S, Lenoir J, Gril E, De Frenne P, Lembrechts JJ, Kopecký M, Macek M, Man M, Wild J, Van Meerbeek K. Microclimate reveals the true thermal niche of forest plant species. Ecol Lett, 2023, 26(12): 2043-2055

[21]

Hazarika A, Deka JR, Majumdar K, Sileshi GW, Nath AJ, Das AK. Maxent modeling for habitat suitability assessment of threatened Dipterocarpus species in the Indian East Himalayas. Biodivers Conserv, 2025, 34(3): 859-876

[22]

Jan A, Arismendi I, Giannico G. Double trouble for native species under climate change: habitat loss and increased environmental overlap with non-native species. Glob Change Biol, 2025, 31(1 e70040

[23]

Kovacs N, Colinet G, Longdoz B, Dincher M, Vancampenhout K, Purwanto BH, Oprins J, Peeters M, Meersmans J. Assessing belowground carbon storage after converting a temperate permanent grassland into a bamboo (Phyllostachys) plantation. Soil Use Manage, 2024, 40(2 e13085

[24]

Lai JX, Fan ML, Liu Y, Huang P, Gaisberger H, Li CH, Zheng YQ, Lin FR. Habitat suitability modeling of a nearly extinct rosewood species (Dalbergia odorifera) under current, and future climate conditions. J Forestry Res, 2025, 36(1): 58

[25]

Lázaro-Lobo A, Wessely J, Essl F, Moser D, Jiménez-Alfaro B. Combining hierarchical distribution models with dispersal simulations to predict the spread of invasive plant species. Glob Ecol Biogeogr, 2025, 34(3 e70026

[26]

Li CH, Zhong QL, Yu KY, Li BY. Carbon, nitrogen, and phosphorus stoichiometry between leaf and soil exhibit the different expansion stages of moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau) into Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) forest. Forests, 2022, 13(11 1830

[27]

Li GL, Liu GH, Liu CL. Comparative genomics of eight complete chloroplast genomes of Phyllostachys species. Forests, 2024, 15(10 1785

[28]

Li DZ, Wang ZP, Zhu ZD, Xia N, Jia LZ, Guo ZH, Yang GY, Stapleton C (2006) Bambuseae (Poaceae). In: Flora of China, vol. 22. Science Press, Beijing. pp. 7–180. (in Chinese)

[29]

Liang ZW, Neményi A, Kovács GP, Gyuricza C. Potential use of bamboo resources in energy value-added conversion technology and energy systems. GCB Bioenergy, 2023, 15(8936-953

[30]

Liu D, Lei XD, Gao WQ, Guo H, Xie YS, Fu LY, Lei YC, Li YT, Zhang ZL, Tang SZ. Mapping the potential distribution suitability of 16 tree species under climate change in northeastern China using Maxent modelling. J Forestry Res, 2022, 33(6): 1739-1750

[31]

Luan Y, Yang YT, Jiang MH, Liu HR, Ma XX, Zhang XB, Sun FB, Fang CH. Unveiling the mechanisms of Moso bamboo’s motor function and internal growth stress. New Phytol, 2024, 243(6): 2201-2213

[32]

Lyu WJ, Du SL, Ying JL, Ngumbau VM, Huang S, Wang SW, Liu HT. Spatial patterns and determinants of endemic taxa richness in the genus Viburnum (Adoxaceae) in China. Diversity, 2022, 14(9 744

[33]

Ma ZB. Development status and countermeasures of bamboo industry in Xinshao County. For Sci Technol, 2024, 8: 77-79(in Chinese)

[34]

Ma XY, Xu H, Cao ZY, Shu L, Zhu RL. Will climate change cause the global peatland to expand or contract? Evidence from the habitat shift pattern of Sphagnum mosses. Glob Change Biol, 2022, 28(21): 6419-6432

[35]

MacDonald JS, Lutscher F, Bourgault Y. Climate change fluctuations can increase population abundance and range size. Ecol Lett, 2024, 27(6 e14453

[36]

Morelli TL, Hallworth MT, Duclos T, Ells A, Faccio SD, Foster JR, McFarland KP, Nislow K, Ralston J, Ratnaswamy M, Deluca WV, Siren APK. Does habitat or climate change drive species range shifts?. Ecography, 2025, 2025(6 e07560

[37]

Pan YD, Birdsey RA, Phillips OL, Houghton RA, Fang JY, Kauppi PE, Keith H, Kurz WA, Ito A, Lewis SL, Nabuurs GJ, Shvidenko A, Hashimoto S, Lerink B, Schepaschenko D, Castanho A, Murdiyarso D. The enduring world forest carbon sink. Nature, 2024, 631(8021): 563-569

[38]

Peng WH, Wang BB, Shen ZL, Guo QR. Complete chloroplast genome of bamboo species Pleioblastus ovatoauritus and comparative analysis of Pleioblastus from China and Japan. Forests, 2023, 14(5 1051

[39]

Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. Opening the black box: an open-source release of Maxent. Ecography, 2017, 40(7): 887-893

[40]

Puchałka R, Paź-Dyderska S, Jagodziński AM, Sádlo J, Vítková M, Klisz M, Koniakin S, Prokopuk Y, Netsvetov M, Nicolescu VN, Zlatanov T, Mionskowski M, Dyderski MK. Predicted range shifts of alien tree species in Europe. Agric for Meteorol, 2023, 341 109650

[41]

Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma JC, Kc S, Leimbach M, Jiang LW, Kram T, Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenöder F, Da Silva LA, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefler J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman JC, Kainuma M, Klimont Z, Marangoni G, Lotze-Campen H, Obersteiner M, Tabeau A, Tavoni M. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Change, 2017, 42: 153-168

[42]

Sanczuk P, Verheyen K, Lenoir J, Zellweger F, Lembrechts JJ, Rodríguez-Sánchez F, Baeten L, Bernhardt-Römermann M, De Pauw K, Vangansbeke P, Perring MP, Berki I, Bjorkman AD, Brunet J, Chudomelová M, De Lombaerde E, Decocq G, Dirnböck T, Durak T, Greiser C, Hédl R, Heinken T, Jandt U, Jaroszewicz B, Kopecký M, Landuyt D, Macek M, Máliš F, Naaf T, Nagel TA, Petřík P, Reczyńska K, Schmidt W, Standovár T, Staude IR, Świerkosz K, Teleki B, Vanneste T, Vild O, Waller D, De Frenne P. Unexpected westward range shifts in European forest plants link to nitrogen deposition. Science, 2024, 386(6718): 193-198

[43]

Schnabel F, Beugnon R, Yang B, Richter R, Eisenhauer N, Huang YY, Liu XJ, Wirth C, Cesarz S, Fichtner A, Perles-Garcia MD, Hähn GJA, Härdtle W, Kunz M, Castro Izaguirre NC, Niklaus PA, von Oheimb G, Schmid B, Trogisch S, Wendisch M, Ma KP, Bruelheide H. Tree diversity increases forest temperature buffering via enhancing canopy density and structural diversity. Ecol Lett, 2025, 28(3 e70096

[44]

Sha ZY, Bai YF, Li RR, Lan H, Zhang XL, Li J, Liu XF, Chang SJ, Xie YC. The global carbon sink potential of terrestrial vegetation can be increased substantially by optimal land management. Commun Earth Environ, 2022, 3 8

[45]

Shen JX, Fan SH, Xu Q, Liu GL. Research progress on factors influencing bamboo growth. World Bamboo Rattan, 2024, 22(1): 96-102(in Chinese)

[46]

Song XZ, Zhou GM, Jiang H, Yu SQ, Fu JH, Li WZ, Wang WF, Ma ZH, Peng CH. Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ Rev, 2011, 19(2011): 418-428

[47]

Song XZ, Peng CH, Ciais P, Li Q, Xiang WH, Xiao WF, Zhou GM, Deng L. Nitrogen addition increased CO2 uptake more than non-CO(2) greenhouse gases emissions in a moso bamboo forest. Sci Adv, 2020, 6(12 eaaw5790

[48]

Sun SX, Zhang Y, Huang DZ, Wang H, Cao Q, Fan PX, Yang N, Zheng PM, Wang RQ. The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Sci Total Environ, 2020, 744 140786

[49]

Tietje M, Antonelli A, Baker WJ, Govaerts R, Smith SA, Eiserhardt WL. Global variation in diversification rate and species richness are unlinked in plants. Proc Natl Acad Sci USA, 2022, 119(27 e2120662119

[50]

Wai TH, Liang X, Xie HH, Liu L, Pan YJ, Xu Y, Zhao LN, Xu XT. Global richness patterns of alpine genus Gentiana depend on multiple factors. Ecol Evol, 2024, 14(5 e11366

[51]

Wang WJ, Wu QY, Wang NN, Ye SW, Wang YJ, Zhang J, Lin CT, Zhu Q. Advances in bamboo genomics: growth and development, stress tolerance, and genetic engineering. J Integr Plant Biol, 2025, 67(7): 1725-1755

[52]

Wu ZY, Raven PH, Hong DY (Eds. ) (2006) Poaceae. In: Flora of China. Science Press; Missouri Botanical Garden Press, Beijing. St. Louis, pp 163–180

[53]

Yamamoto M, Inoue A. Predicting changes in the carbon stocks of bamboo forests in Japan from 1985 to 2005. J Forestry Res, 2023, 28(6): 407-415

[54]

Yang L, Li HE. Projecting the potential distribution and analyzing the bioclimatic factors of four Rhododendron subsect. Tsutsusi species under climate warming. J Forestry Res, 2023, 34(6): 1707-1721

[55]

Yang A, Song B, Zhang WX, Zhang TN, Li XW, Wang HT, Zhu D, Zhao J, Fu SL. Chronic enhanced nitrogen deposition and elevated precipitation jointly benefit soil microbial community in a temperate forest. Soil Biol Biochem, 2024, 193 109397

[56]

Yu ZY, Tan YS, Zhou J, Li JJ, Guo QR. The complete chloroplast genome of (Bambusoideae: Poaceae) Schizostachyum dumetorum var. xinwuense. Mitochondrial DNA Part B, 2021, 6(3): 976-977

[57]

Zhang LN, Ma PF, Zhang YX, Zeng CX, Zhao L, Li DZ. Using nuclear loci and allelic variation to disentangle the phylogeny of Phyllostachys (Poaceae, Bambusoideae). Mol Phylogenet Evol, 2019, 137: 222-235

[58]

Zhang MN, Keenan TF, Luo XZ, Serra-Diaz JM, Li WY, King T, Cheng Q, Li ZC, Andriamiarisoa RL, Raherivelo TNAN, Li YX, Gong P. Elevated CO2 moderates the impact of climate change on future bamboo distribution in Madagascar. Sci Total Environ, 2022, 810 152235

[59]

Zhang L, Liu XJ, Sun ZH, Bu WS, Bongers FJ, Song XY, Yang J, Sun ZK, Li Y, Li S, Cao M, Ma KP, Swenson NG. Functional trait space and redundancy of plant communities decrease toward cold temperature at high altitudes in southwest China. Sci China Life Sci, 2023, 66(2): 376-384

[60]

Zhang HY, Liu P, Zhang YH, Wang ZY, Liu Z. Global warming and landscape fragmentation drive the adaptive distribution of Phyllostachys edulis in China. Forests, 2024, 15(12 2231

[61]

Zhou F. Bamboo silviculture, 1998, Beijing, China Forestry Publishing House(in Chinese)

[62]

Zhou MY, Liu JX, Ma PF, Yang JB, Li DZ. Plastid phylogenomics shed light on intergeneric relationships and spatiotemporal evolutionary history of Melocanninae (Poaceae: Bambusoideae). J Syst Evol, 2022, 60(3): 640-652

[63]

Zhu HH, Jiang ZH, Li L. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6. Sci Bull, 2021, 66(24): 2528-2537

[64]

Zu KL, Wang ZH, Lenoir J, Shen ZH, Chen FS, Shrestha N. Different range shifts and determinations of elevational redistributions of native and non-native plant species in Jinfo Mountain of subtropical China. Ecol Indic, 2022, 145 109678

RIGHTS & PERMISSIONS

Northeast Forestry University

PDF

80

Accesses

0

Citation

Detail

Sections
Recommended

/