Effects of climate change on the richness distribution of Phyllostachys species in China

Qianyue Yang , Xingzhuang Ye , Gaohao Guo , Long Li

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 132

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) :132 DOI: 10.1007/s11676-025-01926-8
Original Paper
research-article

Effects of climate change on the richness distribution of Phyllostachys species in China

Author information +
History +
PDF

Abstract

Climate change disrupts the distribution of species and restructures their richness patterns. The genus of Asian bamboo, Phyllostachys, possesses significant ecological and economic values, and represents the most species-rich genus in the Bambusoideae subfamily. Based on the distribution data of 46 species and 20 environmental variables, we used the MaxEnt model combined with ArcGIS calculations to simulate current and future potential richness distributions under three distinct CO2 emission scenarios. The results showed that the MaxEnt model had a good predictive ability, with a mean area under the working characteristic curve (AUC value) of 0.91 for all species. The main environmental variables that impacted the future distribution of most Phyllostachys species were elevation, variations of seasonal precipitation, and mean diurnal range. Phyllostachys species are currently concentrated in southeastern China. Under future climate projections, 18 species exhibited significant habitat contraction across three or more future climate scenarios, but suitable habitats for other species will expand. This enhancement is most pronounced under the extreme climate scenario (2090s-SSP585), primarily driven by high species gains contributing to elevated turnover values across scenarios. The center of maximum richness will progressively shift southwestward over time. Predictive modeling of Phyllostachys richness distribution dynamics under climate change enhances our understanding of its biogeography and informs strategic introduction programs to bamboo management and augments China's carbon sequestration capacity.

The online version is available at https://link.springer.com/

Corresponding editor: Tao Xu

The online version contains supplementary material available at https://doi.org/10.1007/s11676-025-01926-8.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Keywords

Climate change / MaxEnt model / Richness distribution pattern / Phyllostachys

Cite this article

Download citation ▾
Qianyue Yang, Xingzhuang Ye, Gaohao Guo, Long Li. Effects of climate change on the richness distribution of Phyllostachys species in China. Journal of Forestry Research, 2025, 36(1): 132 DOI:10.1007/s11676-025-01926-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aguirre-Gutiérrez J, Díaz S, Rifai SW, Corral-Rivas JJ, Nava-Miranda MG, González-M R, Hurtado-M AB, Revilla NS, Vilanova E, Almeida E, Almeida de Oliveira E, Alvarez-Davila E, Alves LF, de Andrade ACS, Lola da Costa AC, Vieira SA, Aragão L, Arets E, Aymard C GA, Baccaro F, Bakker YV, Baker TR, Bánki O, Baraloto C, de Camargo PB, Berenguer E, Blanc L, Bonal D, Bongers F, Bordin KM, Brienen R, Brown F, Prestes NCCS, Castilho CV, Ribeiro SC, de Souza FC, Comiskey JA, Valverde FC, Müller SC, da Costa Silva R, do Vale JD, de Andrade Kamimura V, de Oliveira Perdiz R, Del Aguila Pasquel J, Derroire G, Di Fiore A, Disney M, Farfan-Rios W, Fauset S, Feldpausch TR, Ramos RF, Llampazo GF, Martins VF, Fortunel C, Cabrera KG, Barroso JG, Hérault B, Herrera R, Honorio Coronado EN, Huamantupa-Chuquimaco I, Pipoly JJ, Zanini KJ, Jiménez E, Joly CA, Kalamandeen M, Klipel J, Levesley A, Oviedo WL, Magnusson WE, Dos Santos RM, Marimon BS, Marimon-Junior BH, de Almeida Reis SM, Melo Cruz OA, Mendoza AM, Morandi P, Muscarella R, Nascimento H, Neill DA, Menor IO, Palacios WA, Palacios-Ramos S, Pallqui Camacho NC, Pardo G, Pennington RT, de Oliveira Pereira L, Pickavance G, Picolotto RC, Pitman NCA, Prieto A, Quesada C, Ramírez-Angulo H, Réjou-Méchain M, Correa ZR, Reyna Huaymacari JM, Rodriguez CR, Rivas-Torres G, Roopsind A, Rudas A, Salgado Negret B, van der Sande MT, Santana FD, Maës Santos FA, Bergamin RS, Silman MR, Silva C, Espejo JS, Silveira M, Souza FC, Sullivan MJP, Swamy V, Talbot J, Terborgh JJ, van der Meer PJ, van der Heijden G, van Ulft B, Martinez RV, Vedovato L, Vleminckx J, Vos VA, Wortel V, Zuidema PA, Zwerts JA, Laurance SGW, Laurance WF, Chave J, Dalling JW, Barlow J, Poorter L, Enquist BJ, Ter Steege H, Phillips OL, Galbraith D, Malhi Y (2025) Tropical forests in the Americas are changing too slowly to track climate change. Science. https://doi.org/10.1126/science.adl5414

[2]

AkinlabiET, Anane-FeninK, AkwadaDR. Bamboo. Springer International Publishing, 2017.

[3]

AndersonJT, DeMarcheML, DenneyDA, BreckheimerI, SantangeloJ, WadgymarSM. Adaptation and gene flow are insufficient to rescue a montane plant under climate change. Sci, 2025, 388(6746): 525-531.

[4]

AssisJ, Fernández BejaranoSJ, SalazarVW, SchepersL, GouvêaL, FragkopoulouE, LeclercqF, VanhoorneB, TybergheinL, SerrãoEA, VerbruggenH, De ClerckO. Bio-oracle v3.0. pushing marine data layers to the CMIP6 earth system models of climate change research. Glob Ecol Biogeogr, 2024, 334. e13813

[5]

ChalopinD, ClarkLG, WysockiWP, ParkM, DuvallMR, BennetzenJL. Integrated genomic analyses from low-depth sequencing help resolve phylogenetic incongruence in the bamboos (Poaceae: Bambusoideae). Front Plant Sci, 2021, 12. 725728

[6]

ChenM, GuoL, RamakrishnanM, FeiZJ, VinodKK, DingYL, JiaoC, GaoZP, ZhaRF, WangCY, GaoZM, YuF, RenGD, WeiQ. Rapid growth of Moso bamboo (Phyllostachys edulis): cellular roadmaps, transcriptome dynamics, and environmental factors. Plant Cell, 2022, 34(10): 3577-3610.

[7]

ChenY, YuF, GuoC, YangG, ZhangW. Prediction and analysis of global potential suitable areas for Phyllostachys edulis based on MaxEnt ecological niche model. World Bamboo and Rattan, 2024, 22(5): 47-58(in Chinese)

[8]

ChitiT, BlasiE, ChiriacòMV. Carbon sequestration in a bamboo plantation: a case study in a Mediterranean area. J Forestry Res, 2024, 35151.

[9]

DoserJW, KéryM, SaundersSP, FinleyAO, BatemanBL, GrandJ, ReaultS, WeedAS, ZipkinEF. Guidelines for the use of spatially varying coefficients in species distribution models. Glob Ecol Biogeogr, 2024, 334. e13814

[10]

EfronB, HastieT, JohnstoneI, TibshiraniR. Least angle regression. Ann Statist, 2004, 32(2): 407-499.

[11]

ElithJ, PhillipsSJ, HastieT, DudíkM, CheeYE, YatesCJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib, 2011, 17(1): 43-57.

[12]

GaoZM. Genetic basis of moso bamboo breeding and mining of genetic factors for plastic substitute traits. World Bamboo Rattan, 2025, 23(1): 1-9(in Chinese)

[13]

Geng BJ, Wang ZP (1996) Phyllostachys. In: Flora reipublicae popularis sinicae. Science Press, Beijing, pp 243–244

[14]

Gómez-GonzálezS, MirandaA, Hoyos-SantillanJ, LaraA, MoragaP, PausasJG. Afforestation and climate mitigation: lessons from Chile. Trends Ecol Evol, 2024, 39(1): 5-8.

[15]

GrahamMH. Confronting multicollinearity in ecological multiple regression. Ecology, 2003, 84(11): 2809-2815.

[16]

GrecoS, MolariL, ValdrèG, GarciaJJ. Multilevel analysis of six species of Phyllostachys bamboo and Arundo donax: preliminary survey on Italian grown stands. Wood Sci Technol, 2024, 58(3): 1025-1049.

[17]

Grombone-GuaratiniM, GasparM, OliveiraV, TorresM, do NascimentoA, AidarM. Atmospheric CO2 enrichment markedly increases photosynthesis and growth in a woody tropical bamboo from the Brazilian Atlantic Forest. N Z J Bot, 2013, 51(4): 275-285.

[18]

GuR, WeiSP, LiJR, ZhengSH, LiZT, LiuGL, FanSH. Predicting the impacts of climate change on the geographic distribution of moso bamboo in China based on biomod2 model. Eur J for Res, 2024, 143(5): 1499-1512.

[19]

GuoQ, YangG, DuT, ShiJ. Carbon character of Chinese bamboo forest. World Bamboo and Rattan, 2005, 3: 25-28(in Chinese)

[20]

HaesenS, LenoirJ, GrilE, De FrenneP, LembrechtsJJ, KopeckýM, MacekM, ManM, WildJ, Van MeerbeekK. Microclimate reveals the true thermal niche of forest plant species. Ecol Lett, 2023, 26(12): 2043-2055.

[21]

HazarikaA, DekaJR, MajumdarK, SileshiGW, NathAJ, DasAK. Maxent modeling for habitat suitability assessment of threatened Dipterocarpus species in the Indian East Himalayas. Biodivers Conserv, 2025, 34(3): 859-876.

[22]

JanA, ArismendiI, GiannicoG. Double trouble for native species under climate change: habitat loss and increased environmental overlap with non-native species. Glob Change Biol, 2025, 311. e70040

[23]

KovacsN, ColinetG, LongdozB, DincherM, VancampenhoutK, PurwantoBH, OprinsJ, PeetersM, MeersmansJ. Assessing belowground carbon storage after converting a temperate permanent grassland into a bamboo (Phyllostachys) plantation. Soil Use Manage, 2024, 402. e13085

[24]

LaiJX, FanML, LiuY, HuangP, GaisbergerH, LiCH, ZhengYQ, LinFR. Habitat suitability modeling of a nearly extinct rosewood species (Dalbergia odorifera) under current, and future climate conditions. J Forestry Res, 2025, 36158.

[25]

Lázaro-LoboA, WesselyJ, EsslF, MoserD, Jiménez-AlfaroB. Combining hierarchical distribution models with dispersal simulations to predict the spread of invasive plant species. Glob Ecol Biogeogr, 2025, 343. e70026

[26]

LiCH, ZhongQL, YuKY, LiBY. Carbon, nitrogen, and phosphorus stoichiometry between leaf and soil exhibit the different expansion stages of moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau) into Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) forest. Forests, 2022, 1311. 1830

[27]

LiGL, LiuGH, LiuCL. Comparative genomics of eight complete chloroplast genomes of Phyllostachys species. Forests, 2024, 1510. 1785

[28]

Li DZ, Wang ZP, Zhu ZD, Xia N, Jia LZ, Guo ZH, Yang GY, Stapleton C (2006) Bambuseae (Poaceae). In: Flora of China, vol. 22. Science Press, Beijing. pp. 7–180. (in Chinese)

[29]

LiangZW, NeményiA, KovácsGP, GyuriczaC. Potential use of bamboo resources in energy value-added conversion technology and energy systems. GCB Bioenergy, 2023, 15(8): 936-953.

[30]

LiuD, LeiXD, GaoWQ, GuoH, XieYS, FuLY, LeiYC, LiYT, ZhangZL, TangSZ. Mapping the potential distribution suitability of 16 tree species under climate change in northeastern China using Maxent modelling. J Forestry Res, 2022, 33(6): 1739-1750.

[31]

LuanY, YangYT, JiangMH, LiuHR, MaXX, ZhangXB, SunFB, FangCH. Unveiling the mechanisms of Moso bamboo’s motor function and internal growth stress. New Phytol, 2024, 243(6): 2201-2213.

[32]

LyuWJ, DuSL, YingJL, NgumbauVM, HuangS, WangSW, LiuHT. Spatial patterns and determinants of endemic taxa richness in the genus Viburnum (Adoxaceae) in China. Diversity, 2022, 149. 744

[33]

MaZB. Development status and countermeasures of bamboo industry in Xinshao County. For Sci Technol, 2024, 8: 77-79(in Chinese)

[34]

MaXY, XuH, CaoZY, ShuL, ZhuRL. Will climate change cause the global peatland to expand or contract? Evidence from the habitat shift pattern of Sphagnum mosses. Glob Change Biol, 2022, 28(21): 6419-6432.

[35]

MacDonaldJS, LutscherF, BourgaultY. Climate change fluctuations can increase population abundance and range size. Ecol Lett, 2024, 276. e14453

[36]

MorelliTL, HallworthMT, DuclosT, EllsA, FaccioSD, FosterJR, McFarlandKP, NislowK, RalstonJ, RatnaswamyM, DelucaWV, SirenAPK. Does habitat or climate change drive species range shifts?. Ecography, 2025, 20256. e07560

[37]

PanYD, BirdseyRA, PhillipsOL, HoughtonRA, FangJY, KauppiPE, KeithH, KurzWA, ItoA, LewisSL, NabuursGJ, ShvidenkoA, HashimotoS, LerinkB, SchepaschenkoD, CastanhoA, MurdiyarsoD. The enduring world forest carbon sink. Nature, 2024, 631(8021): 563-569.

[38]

PengWH, WangBB, ShenZL, GuoQR. Complete chloroplast genome of bamboo species Pleioblastus ovatoauritus and comparative analysis of Pleioblastus from China and Japan. Forests, 2023, 145. 1051

[39]

PhillipsSJ, AndersonRP, DudíkM, SchapireRE, BlairME. Opening the black box: an open-source release of Maxent. Ecography, 2017, 40(7): 887-893.

[40]

PuchałkaR, Paź-DyderskaS, JagodzińskiAM, SádloJ, VítkováM, KliszM, KoniakinS, ProkopukY, NetsvetovM, NicolescuVN, ZlatanovT, MionskowskiM, DyderskiMK. Predicted range shifts of alien tree species in Europe. Agric for Meteorol, 2023, 341. 109650

[41]

RiahiK, van VuurenDP, KrieglerE, EdmondsJ, O’NeillBC, FujimoriS, BauerN, CalvinK, DellinkR, FrickoO, LutzW, PoppA, CuaresmaJC, KcS, LeimbachM, JiangLW, KramT, RaoS, EmmerlingJ, EbiK, HasegawaT, HavlikP, HumpenöderF, Da SilvaLA, SmithS, StehfestE, BosettiV, EomJ, GernaatD, MasuiT, RogeljJ, StreflerJ, DrouetL, KreyV, LudererG, HarmsenM, TakahashiK, BaumstarkL, DoelmanJC, KainumaM, KlimontZ, MarangoniG, Lotze-CampenH, ObersteinerM, TabeauA, TavoniM. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Change, 2017, 42: 153-168.

[42]

SanczukP, VerheyenK, LenoirJ, ZellwegerF, LembrechtsJJ, Rodríguez-SánchezF, BaetenL, Bernhardt-RömermannM, De PauwK, VangansbekeP, PerringMP, BerkiI, BjorkmanAD, BrunetJ, ChudomelováM, De LombaerdeE, DecocqG, DirnböckT, DurakT, GreiserC, HédlR, HeinkenT, JandtU, JaroszewiczB, KopeckýM, LanduytD, MacekM, MálišF, NaafT, NagelTA, PetříkP, ReczyńskaK, SchmidtW, StandovárT, StaudeIR, ŚwierkoszK, TelekiB, VannesteT, VildO, WallerD, De FrenneP. Unexpected westward range shifts in European forest plants link to nitrogen deposition. Science, 2024, 386(6718): 193-198.

[43]

SchnabelF, BeugnonR, YangB, RichterR, EisenhauerN, HuangYY, LiuXJ, WirthC, CesarzS, FichtnerA, Perles-GarciaMD, HähnGJA, HärdtleW, KunzM, Castro IzaguirreNC, NiklausPA, von OheimbG, SchmidB, TrogischS, WendischM, MaKP, BruelheideH. Tree diversity increases forest temperature buffering via enhancing canopy density and structural diversity. Ecol Lett, 2025, 283. e70096

[44]

ShaZY, BaiYF, LiRR, LanH, ZhangXL, LiJ, LiuXF, ChangSJ, XieYC. The global carbon sink potential of terrestrial vegetation can be increased substantially by optimal land management. Commun Earth Environ, 2022, 3. 8

[45]

ShenJX, FanSH, XuQ, LiuGL. Research progress on factors influencing bamboo growth. World Bamboo Rattan, 2024, 22(1): 96-102(in Chinese)

[46]

SongXZ, ZhouGM, JiangH, YuSQ, FuJH, LiWZ, WangWF, MaZH, PengCH. Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ Rev, 2011, 19(2011): 418-428.

[47]

SongXZ, PengCH, CiaisP, LiQ, XiangWH, XiaoWF, ZhouGM, DengL. Nitrogen addition increased CO2 uptake more than non-CO(2) greenhouse gases emissions in a moso bamboo forest. Sci Adv, 2020, 612. eaaw5790

[48]

SunSX, ZhangY, HuangDZ, WangH, CaoQ, FanPX, YangN, ZhengPM, WangRQ. The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Sci Total Environ, 2020, 744. 140786

[49]

TietjeM, AntonelliA, BakerWJ, GovaertsR, SmithSA, EiserhardtWL. Global variation in diversification rate and species richness are unlinked in plants. Proc Natl Acad Sci USA, 2022, 11927. e2120662119

[50]

WaiTH, LiangX, XieHH, LiuL, PanYJ, XuY, ZhaoLN, XuXT. Global richness patterns of alpine genus Gentiana depend on multiple factors. Ecol Evol, 2024, 145. e11366

[51]

WangWJ, WuQY, WangNN, YeSW, WangYJ, ZhangJ, LinCT, ZhuQ. Advances in bamboo genomics: growth and development, stress tolerance, and genetic engineering. J Integr Plant Biol, 2025, 67(7): 1725-1755.

[52]

Wu ZY, Raven PH, Hong DY (Eds. ) (2006) Poaceae. In: Flora of China. Science Press; Missouri Botanical Garden Press, Beijing. St. Louis, pp 163–180

[53]

YamamotoM, InoueA. Predicting changes in the carbon stocks of bamboo forests in Japan from 1985 to 2005. J Forestry Res, 2023, 28(6): 407-415.

[54]

YangL, LiHE. Projecting the potential distribution and analyzing the bioclimatic factors of four Rhododendron subsect. Tsutsusi species under climate warming. J Forestry Res, 2023, 34(6): 1707-1721.

[55]

YangA, SongB, ZhangWX, ZhangTN, LiXW, WangHT, ZhuD, ZhaoJ, FuSL. Chronic enhanced nitrogen deposition and elevated precipitation jointly benefit soil microbial community in a temperate forest. Soil Biol Biochem, 2024, 193. 109397

[56]

YuZY, TanYS, ZhouJ, LiJJ, GuoQR. The complete chloroplast genome of (Bambusoideae: Poaceae) Schizostachyum dumetorum var. xinwuense. Mitochondrial DNA Part B, 2021, 6(3): 976-977.

[57]

ZhangLN, MaPF, ZhangYX, ZengCX, ZhaoL, LiDZ. Using nuclear loci and allelic variation to disentangle the phylogeny of Phyllostachys (Poaceae, Bambusoideae). Mol Phylogenet Evol, 2019, 137: 222-235.

[58]

ZhangMN, KeenanTF, LuoXZ, Serra-DiazJM, LiWY, KingT, ChengQ, LiZC, AndriamiarisoaRL, RaheriveloTNAN, LiYX, GongP. Elevated CO2 moderates the impact of climate change on future bamboo distribution in Madagascar. Sci Total Environ, 2022, 810. 152235

[59]

ZhangL, LiuXJ, SunZH, BuWS, BongersFJ, SongXY, YangJ, SunZK, LiY, LiS, CaoM, MaKP, SwensonNG. Functional trait space and redundancy of plant communities decrease toward cold temperature at high altitudes in southwest China. Sci China Life Sci, 2023, 66(2): 376-384.

[60]

ZhangHY, LiuP, ZhangYH, WangZY, LiuZ. Global warming and landscape fragmentation drive the adaptive distribution of Phyllostachys edulis in China. Forests, 2024, 1512. 2231

[61]

ZhouFBamboo silviculture, 1998, Beijing. China Forestry Publishing House. (in Chinese)

[62]

ZhouMY, LiuJX, MaPF, YangJB, LiDZ. Plastid phylogenomics shed light on intergeneric relationships and spatiotemporal evolutionary history of Melocanninae (Poaceae: Bambusoideae). J Syst Evol, 2022, 60(3): 640-652.

[63]

ZhuHH, JiangZH, LiL. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6. Sci Bull, 2021, 66(24): 2528-2537.

[64]

ZuKL, WangZH, LenoirJ, ShenZH, ChenFS, ShresthaN. Different range shifts and determinations of elevational redistributions of native and non-native plant species in Jinfo Mountain of subtropical China. Ecol Indic, 2022, 145. 109678

RIGHTS & PERMISSIONS

Northeast Forestry University

AI Summary AI Mindmap
PDF

60

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/