From lab to forest: overcoming barriers to in vitro propagation of forest trees

Tuija Aronen , Valbona Sota , Branislav Cvjetković , Bruce Christie , Andrea Rupps , Lucie Fischerova , Dheeraj Singh Rathore , Stefaan P. O. Werbrouck

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1)

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) DOI: 10.1007/s11676-025-01914-y
Review Article
review-article

From lab to forest: overcoming barriers to in vitro propagation of forest trees

Author information +
History +
PDF

Abstract

Reforestation initiatives are often limited by insufficient seeds, a problem exacerbated by natural variability in tree flowering and seed production and climate change and other environmental challenges. Innovative and adaptive solutions such as in vitro propagation are thus needed. Tissue culture can provide high-quality propagation material for tree conservation and mass propagation, but faces technical, economic, regulatory, and social barriers. Obstacles related to the academia–industry interface and to stakeholder concerns are discussed and actions suggested to overcome these barriers to realize the full potential of tree micropropagation. These include refining techniques to improve efficiency and reduce costs; establishing collaborations among researchers, industry, and foresters; and reducing points of contention and misinformation regarding genetic diversity and public perception. International collaborative initiatives, exemplified by the EU COST Action CA21157 COPYTREE, are elementary for achieving these goals.

Keywords

Commercialization / Forest reproductive material / Technology transfer / Tissue culture

Cite this article

Download citation ▾
Tuija Aronen, Valbona Sota, Branislav Cvjetković, Bruce Christie, Andrea Rupps, Lucie Fischerova, Dheeraj Singh Rathore, Stefaan P. O. Werbrouck. From lab to forest: overcoming barriers to in vitro propagation of forest trees. Journal of Forestry Research, 2025, 36(1): DOI:10.1007/s11676-025-01914-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbdallaN, El-RamadyH, SeliemMK, El-MahroukME, TahaN, BayoumiY, ShalabyTA, DobránszkiJ. An academic and technical overview on plant micropropagation challenges. Horticulturae, 2022, 88677.

[2]

AdamsGW, KunzeHA, McCartneyA, MillicanS, ParkYSParkYS, BongaJM, MoonHK. An industrial perspective on the use of advanced reforestation stock technologies. Vegetative propagation of forest trees, 2016, Daejeon. National Institute of Forest Science. 323334

[3]

AmaralJ, RibeyreZ, VigneaudJ, SowMD, FichotR, MessierC, PintoG, NoletP, MauryS. Advances and promises of epigenetics for forest trees. Forests, 2020, 119976.

[4]

AndiviaE, Villar-SalvadorP, OlietJA, PuértolasJ, DumroeseRK, IvetićV, Molina-VenegasR, ArellanoEC, LiGL, OvalleJF. Climate and species stress resistance modulate the higher survival of large seedlings in forest restorations worldwide. Ecol Appl, 2021, 316. e02394

[5]

Aronen T, Varis S, Tikkinen M (2025b) Somatic embryogenesis: concept, principles, and applications. In: Forest microbiology. Amsterdam: Elsevier pp 373–388. https://doi.org/10.1016/B978-0-443-21903-0.00022-9

[6]

Aronen T, Varis S, Välimäki S, Edesi J, Latvala T, Tikkinen M (2025a) Paving the way for commercial somatic embryogenesis: Norway spruce in Finland. Proceedings of the 6th IUFRO 2.09.02 Conference The might of vegetative propagation for healthy and productive forests to face climate challenges, 3–8 March 2024.New Zealand. In press

[7]

Ascoli-MorreteT, SignorE, Santos-PereiraM, ZanellaN. Morphological abnormalities in anurans from southern Brazil. Austral Ecol, 2019, 44(6): 1025-1029.

[8]

BairuMW, KaneME. Physiological and developmental problems encountered by in vitro cultured plants. Plant Growth Regul, 2011, 63(2): 101-103.

[9]

BaloY. Elimination of contamination in plant tissue culture laboratory. Acta Bot Plant Sin, 2023, 2(3): 22-29.

[10]

BerggrenK, NordkvistM, BjörkmanC, BylundH, KlapwijkMJ, PuentesA. Synergistic effects of methyl jasmonate treatment and propagation method on Norway spruce resistance against a bark-feeding insect. Front Plant Sci, 2023, 141165156.

[11]

BettsMG, YangZQ, HadleyAS, SmithAC, RousseauJS, NorthrupJM, NoceraJJ, GorelickN, GerberBD. Forest degradation drives widespread avian habitat and population declines. Nat Ecol Evol, 2022, 6(6): 709-719.

[12]

BichoMC, CorreiaAC, PintoC, BarcikP, DavidJS, Costa e SilvaF. More than the climate: reproductive and vegetative growth compete for resources in Quercus suber. Eur J for Res, 2024, 143(6): 1853-1869.

[13]

BondurianskyR, CreanAJ, DayT. The implications of nongenetic inheritance for evolution in changing environments. Evol Appl, 2011, 5(2): 192-201.

[14]

BrancalionPHS, BroadbentEN, de-MiguelS, CardilA, RosaMR, AlmeidaCT, AlmeidaDRA, ChakravartyS, ZhouM, GamarraJGP, LiangJJ, CrouzeillesR, HéraultB, AragãoLEOC, SilvaCA, Almeyda-ZambranoAM. Emerging threats linking tropical deforestation and the COVID-19 pandemic. Perspect Ecol Conserv, 2020, 18(4): 243-246.

[15]

CardiT, MurovecJ, BakhshA, BonieckaJ, BruegmannT, BullSE, EeckhautT, FladungM, GalovicV, LinkiewiczA, LukanT, MafraI, MichalskiK, KavasM, NicoliaA, NowakowskaJ, SágiL, SarmientoC, YıldırımK, ZlatkovićM, HenselG, Van LaereK. CRISPR/Cas-mediated plant genome editing: outstanding challenges a decade after implementation. Trends Plant Sci, 2023, 28(10): 1144-1165.

[16]

CardinaleBJ, DuffyJE, GonzalezA, HooperDU, PerringsC, VenailP, NarwaniA, MaceGM, TilmanD, WardleDA, KinzigAP, DailyGC, LoreauM, GraceJB, LarigauderieA, SrivastavaDS, NaeemS. Biodiversity loss and its impact on humanity. Nature, 2012, 486(7401): 59-67.

[17]

CarleJ, DuvalA, AshfordS. The future of planted forests. Int for Rev, 2020, 2265.

[18]

Cassells AC (2012) Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests. In: Plant cell culture protocols. Humana Press, pp 57–80. https://doi.org/10.1007/978-1-61779-818-4_6

[19]

ChhatreA, AgrawalA. Trade-offs and synergies between carbon storage and livelihood benefits from forest commons. Proc Natl Acad Sci U S A, 2009, 106(42): 17667-17670.

[20]

Council of European Union (1999) Council Directive 1999/105/EC (Regulation on forest reproductive material). Retrieved from http://data.europa.eu/eli/dir/1999/105/oj

[21]

CurtisPG, SlayCM, HarrisNL, TyukavinaA, HansenMC. Classifying drivers of global forest loss. Science, 2018, 361(6407): 1108-1111.

[22]

DeanCA. Genetic parameters of somatic clones of coastal Douglas-fir at 5½-years across Washington and Oregon, USA. Silvae Genet, 2008, 57(1–6): 269-275.

[23]

DumroeseRK, LandisTD, PintoJR, HaaseDL, WilkinsonKW, DavisAS. Meeting forest restoration challenges: using the target plant concept. Reforesta, 2016, 1: 37-52.

[24]

EgertsdotterU, AhmadI, ClaphamD. Automation and scale up of somatic embryogenesis for commercial plant production, with emphasis on conifers. Front Plant Sci, 2019, 10109.

[25]

FAO (2022) The State of the World’s Forests. Forest pathways for green recovery and building inclusive, resilient and sustainable economies. Rome, FAO, 2022.

[26]

FayMF. Conservation of rare and endangered plants using in vitro methods. In Vitro Cell Dev Biol Plant, 1992, 28(1): 1-4.

[27]

Find JI (2016) Towards industrial production of tree varieties through somatic embryogenesis and other vegetative propagation technologies: Nordmann fir (Abies nordmanniana (Steven) Spach)-from research laboratory to production. In Vegetative Propagation of Forest Trees; National Institute of Forest Science: Seoul, Republic of Korea pp 528–537

[28]

GrattapagliaD. Twelve years into genomic selection in forest trees: climbing the slope of enlightenment of marker assisted tree breeding. Forests, 2022, 13101554.

[29]

HaaseDL, DavisAS. Developing and supporting quality nursery facilities and staff are necessary to meet global forest and landscape restoration needs. Reforesta, 2017, 4: 69-93.

[30]

Hacket-PainA, BogdziewiczM. Climate change and plant reproduction: trends and drivers of mast seeding change. Philos Trans R Soc Lond B Biol Sci, 2021, 3761839. 20200379

[31]

IF (2021) The European Innovation Fund www.euinnovationfund.eu [accessed 20 February, 2025]

[32]

JalonenR, ValetteM, BoshierD, DuminilJ, ThomasE. Forest and landscape restoration severely constrained by a lack of attention to the quantity and quality of tree seed: insights from a global survey. Conserv Lett, 2018, 114. e12424

[33]

Kijowska-ObercJ, StaszakAM, RatajczakE. Climate change affects seed aging? Initiation mechanism and consequences of loss of forest tree seed viability. Trees, 2021, 35(4): 1099-1108.

[34]

KlupczyńskaEA, RatajczakE. Can forest trees cope with climate change? -effects of DNA methylation on gene expression and adaptation to environmental change. Int J Mol Sci, 2021, 2224. 13524

[35]

KumariN, GuptaA, PandeyBC, KushwahaR, YaseenM. In vitro cultures: challenges and limitations. Plants for immunity and conservation strategies, 2023, Singapore. Springer Nature Singapore. 371383.

[36]

Landis TD (2011) The target plant concept—a history and brief overview. In: Riley LE, Haase DL, Pinto JR (eds) National Proceedings: Forest and Conservation Nursery Associations. pp. 61–66

[37]

Lelu-WalterMA, ThompsonD, HarvengtL, SanchezL, ToribioM, PâquesLE. Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genet Genomes, 2013, 9(4): 883-899.

[38]

LindenmayerDB, LauranceWF, FranklinJF. Global decline in large old trees. Science, 2012, 338(6112): 1305-1306.

[39]

LovettGM, WeissM, LiebholdAM, HolmesTP, LeungB, LambertKF, OrwigDA, CampbellFT, RosenthalJ, McCulloughDG, WildovaR, AyresMP, CanhamCD, FosterDR, LaDeauSL, WeldyT. Nonnative forest insects and pathogens in the United States: impacts and policy options. Ecol Appl, 2016, 26(5): 1437-1455.

[40]

Mantilla ContrerasJ, SchüßlerD, ZerbeS. Editorial: Current challenges in forest restoration and sustainable forest management. Front Glob Change, 2023, 61172760.

[41]

MarshetNG, FekaduHH. Review on effect of climate change on forest ecosystem. Int J Environ Sci Nat Res, 2019, 174555968.

[42]

MatarugaM, CvjetkovićB, De CuyperB, AnevaI, ZhelevP, CudlínP, MetslaidM, KankaanhuhtaV, ColletC, AnnighöferP, MathesT, MarianthiT, DespoinaP, JónsdóttirRJ, Cristina MonteverdiM, de DatoG, MariottiB, Dina KolevskaD, LazarevićJ, Sundheim FløistadI, KliszM, GilW, PaivaV, FonsecaT, NicolescuVN, PopovićV, DevetakovićJ, RepáčI, BožičG, KraigherH, AndiviaE, DiezJJ, BöhleniusH, LöfM, BilirN, Villar-SalvadorP. Monitoring and control of forest seedling quality in Europe. For Ecol Manag, 2023, 546. 121308

[43]

MerkleSA, KochJL, TullAR, DassowJE, CareyDW, BarnesBF, RichinsMW, MontelloPM, EidleKR, HouseLT, HermsDA. Application of somatic embryogenesis for development of emerald ash borer-resistant white ash and green ash varietals. New for, 2023, 54(4): 697-720.

[44]

MilesiP, KastallyC, DauphinB, CervantesS, BagnoliF, BuddeKB, CaversS, FadyB, Faivre-RampantP, González-MartínezSC, GrivetD, GugerliF, JorgeV, Lesur KupinI, OjedaDI, OlssonS, OpgenoorthL, PinosioS, PlomionC, RellstabC, RogierO, ScalabrinS, ScottiI, VendraminGG, WestergrenM, LascouxM, PyhäjärviT. Resilience of genetic diversity in forest trees over the quaternary. Nat Commun, 2024, 15. 8538

[45]

Montalbán IA, Castander-Olarieta A, Pereira C, Canhoto J, Moncaleán P (2020) Use of biotechnology in forestry breeding programs for natural resources and biodiversity conservation: creating super trees for the future. In: Agricultural, forestry and bioindustry biotechnology and biodiscovery. Springer International Publishing, pp 103–115 https://doi.org/10.1007/978-3-030-51358-0_6

[46]

O’DwyerM, FilieriR, O’MalleyL. Establishing successful university–industry collaborations: barriers and enablers deconstructed. J Technol Transf, 2023, 48(3): 900-931.

[47]

PanYD, BirdseyRA, FangJY, HoughtonR, KauppiPE, KurzWA, PhillipsOL, ShvidenkoA, LewisSL, CanadellJG, CiaisP, JacksonRB, PacalaSW, McGuireAD, PiaoSL, RautiainenA, SitchS, HayesD. A large and persistent carbon sink in the world’s forests. Science, 2011, 333(6045): 988-993.

[48]

PuentesA, HögbergKA, BjörklundN, NordlanderG. Novel avenues for plant protection: plant propagation by somatic embryogenesis enhances resistance to insect feeding. Front Plant Sci, 2018, 91553.

[49]

RäsänenA, SarkkiS, HaanpääO, IsolahtiM, KekkonenH, KikuchiK, KoukkariV, KärkkäinenK, MiettinenJ, MäntymaaE, NieminenM, RahkilaR, RuohonenA, SarkkolaS, VälimäkiM, YliperttulaK, HeikkinenHI. Bridging the knowledge-action gap: a framework for co-producing actionable knowledge. Environ Sci Policy, 2024, 162. 103929

[50]

RossoniAL, de VasconcellosEPG, de Castilho RossoniRL. Barriers and facilitators of university-industry collaboration for research, development and innovation: a systematic review. Manag Rev Q, 2024, 74(3): 1841-1877.

[51]

RosvallO, BradshawRH, EgertsdotterU, IngvarssonPK, MullinTJ, WuH. Using Norway spruce clones in Swedish forestry: implications of clones for management. Scand J for Res, 2019, 34(5): 390-404.

[52]

SenyangeB, De SteurH, WesanaJ, GellynckX, Van HuylenbroeckG. Stakeholders’ evaluation of tissue culture plants: evidence from social, economic, and agronomic studies. J Hortic Sci Biotechnol, 2024, 99(6): 620-638.

[53]

Stoehr MU, El-Kassaby YA (2011) Challenges facing the forest industry in relation to seed dormancy and seed quality. In: Seed dormancy. Humana Press, pp 3–15. https://doi.org/10.1007/978-1-61779-231-1_1

[54]

StueppCA, WendlingI, XavierA, Zuffellato-RibasKC. Vegetative propagation and application of clonal forestry in Brazilian native tree species. Pesq Agropec Bras, 2018, 53(9): 985-1002.

[55]

TikkinenM, LatvalaT, AronenT. Interest in vegetatively propagated Norway spruce materials–a survey among Finnish forest owners and professionals. Silva Fenn, 2021, 553. 10506

[56]

TsakaldimiM, GanatsasP, JacobsDF. Prediction of planted seedling survival of five Mediterranean species based on initial seedling morphology. New for, 2013, 44(3): 327-339.

[57]

ViejoM, TengsT, YakovlevI, CrossH, KrokeneP, OlsenJE, FossdalCG. Epitype-inducing temperatures drive DNA methylation changes during somatic embryogenesis in the long-lived gymnosperm Norway spruce. Front Plant Sci, 2023, 141196806.

[58]

WuHX. Benefits and risks of using clones in forestry–a review. Scand J for Res, 2019, 34(5): 352-359.

[59]

ZhouSF, LongH, XingH, ZhangK, WangR, ZhangEL. Human activities facilitated the decline of forest ecosystem in East Asia after 5000 a BP. Earth Sci Rev, 2023, 245. 104552

Funding

Natural Resources Institute Finland

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

63

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/