Spatio-temporal changes in forest tree species diversity in China over the past 20 years

Yonghong Zhang , Liang Shi , Honglin He , Qingqing Chang , Jianming Deng , Yan Lv , Qian Xu , Weihua Liu , Mengyu Zhang , Chenxi Li

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 112

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) :112 DOI: 10.1007/s11676-025-01912-0
Original Paper
research-article

Spatio-temporal changes in forest tree species diversity in China over the past 20 years

Author information +
History +
PDF

Abstract

The latitudinal diversity gradient (LDG) is one of the most notable biodiversity patterns in biogeography. The metabolic theory of ecology (MTE) explains ecological patterns, including the LDG. However, little is known about whether the LDG remains stable over time as climate warming progresses and whether MTE remains applicable to clarify this pattern. In this study, forest data spanning temperate, subtropical, and tropical zones across China were used to analyze long-term changes in the LDG of tree species over 2005–2020. Based on the MTE framework, spatial scales were considered to assess temperature dependence of typical forest trees species. Our results show that species richness decreased with increasing latitude, and that temperature was the primary driver of this change. Although temperature in China has significantly increased over the past two decades, the LDG of tree species has remained stable. However, there was a decrease in species richness in tropical regions over time. With predictions of the MTE, the logarithm of typical forest tree species richness exhibited negative linear relationships with the inverse of ambient temperature, indicating temperature dependence of species richness. However, the relationship remained stable and was strongly influenced by spatial scale, intensifying as spatial scale increased. The findings emphasize the important role of temperature in shaping the LDG. The effects of spatial scale, in particular, should be considered when biodiversity management plans are developed for future climate change.

Keywords

Climate warming / Latitudinal diversity gradient (LDG) / Metabolic theory of ecology / Species richness / Spatial scale / Temporal dynamic

Cite this article

Download citation ▾
Yonghong Zhang, Liang Shi, Honglin He, Qingqing Chang, Jianming Deng, Yan Lv, Qian Xu, Weihua Liu, Mengyu Zhang, Chenxi Li. Spatio-temporal changes in forest tree species diversity in China over the past 20 years. Journal of Forestry Research, 2025, 36(1): 112 DOI:10.1007/s11676-025-01912-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen AP, Brown JH, Gillooly JF. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science, 2002, 297(5586): 1545-1548

[2]

Benedetti F, Vogt M, Elizondo UH, Righetti D, Zimmermann NE, Gruber N. Major restructuring of marine plankton assemblages under global warming. Nat Commun, 2021, 12(1 5226

[3]

Bohdalková E, Toszogyova A, Šímová I, Storch D. Universality in biodiversity patterns: variation in species–temperature and species–productivity relationships reveals a prominent role of productivity in diversity gradients. Ecography, 2021, 44(9): 1366-1378

[4]

Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, Lopez-Gonzalez G, Monteagudo-Mendoza A, Malhi Y, Lewis SL, Vásquez Martinez R, Alexiades M, Álvarez Dávila E, Alvarez-Loayza P, Andrade A, Aragão LEOC, Araujo-Murakami A, Arets EJMM, Arroyo L, Aymard CGA, Bánki OS, Baraloto C, Barroso J, Bonal D, Boot RGA, Camargo JLC, Castilho CV, Chama V, Chao KJ, Chave J, Comiskey JA, Cornejo Valverde F, da Costa L, de Oliveira EA, Di Fiore A, Erwin TL, Fauset S, Forsthofer M, Galbraith DR, Grahame ES, Groot N, Hérault B, Higuchi N, Honorio Coronado EN, Keeling H, Killeen TJ, Laurance WF, Laurance S, Licona J, Magnussen WE, Marimon BS, Marimon-Junior BH, Mendoza C, Neill DA, Nogueira EM, Núñez P, Pallqui Camacho NC, Parada A, Pardo-Molina G, Peacock J, Peña-Claros M, Pickavance GC, Pitman NCA, Poorter L, Prieto A, Quesada CA, Ramírez F, Ramírez-Angulo H, Restrepo Z, Roopsind A, Rudas A, Salomão RP, Schwarz M, Silva N, Silva-Espejo JE, Silveira M, Stropp J, Talbot J, ter Steege H, Teran-Aguilar J, Terborgh J, Thomas-Caesar R, Toledo M, Torello-Raventos M, Umetsu RK, van der Heijden GMF, van der Hout P, Guimarães Vieira IC, Vieira SA, Vilanova E, Vos VA, Zagt RJ. Long-term decline of the Amazon carbon sink. Nature, 2015, 519(7543): 344-348

[5]

Brown JH. Why are there so many species in the tropics?. J Biogeogr, 2014, 41(1): 8-22

[6]

Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. Toward a metabolic theory of ecology. Ecology, 2004, 85(7): 1771-1789

[7]

Canavero A, Arim M, Pérez F, Jaksic FM, Marquet PA. A metabolic view of amphibian local community structure: the role of activation energy. Ecography, 2018, 41(2): 388-400

[8]

Chaudhary C, Richardson AJ, Schoeman DS, Costello MJ. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc Natl Acad Sci USA, 2021, 118(15 e2015094118

[9]

Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD. Rapid range shifts of species associated with high levels of climate warming. Science, 2011, 333(6045): 1024-1026

[10]

Chu CJ, Lutz JA, Král K, Vrška T, Yin X, Myers JA, Abiem I, Alonso A, Bourg N, Burslem DFRP, Cao M, Chapman H, Condit R, Fang SQ, Fischer GA, Gao LM, Hao ZQ, Hau BCH, He Q, Hector A, Hubbell SP, Jiang MX, Jin GZ, Kenfack D, Lai JS, Li BH, Li XK, Li YD, Lian JY, Lin LX, Liu YK, Liu Y, Luo YH, Ma KP, McShea W, Memiaghe H, Mi XC, Ni M, O’Brien MJ, de Oliveira AA, Orwig DA, Parker GG, Qiao XJ, Ren HB, Reynolds G, Sang WG, Shen GC, Su ZY, Sui XH, Sun IF, Tian SY, Wang B, Wang XH, Wang XG, Wang YS, Weiblen GD, Wen SJ, Xi NX, Xiang WS, Xu H, Xu K, Ye WH, Zhang BW, Zhang JX, Zhang XT, Zhang YM, Zhu K, Zimmerman J, Storch D, Baltzer JL, Anderson-Teixeira KJ, Mittelbach GG, He FL. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol Lett, 2019, 22(2): 245-255

[11]

De Frenne P, Graae BJ, Rodríguez-Sánchez F, Kolb A, Chabrerie O, Decocq G, De Kort H, De Schrijver A, Diekmann M, Eriksson O, Gruwez R, Hermy M, Lenoir J, Plue J, Coomes DA, Verheyen K. Latitudinal gradients as natural laboratories to infer species' responses to temperature. J Ecol, 2013, 101(3): 784-795

[12]

Dell AI, Pawar S, Savage VM. Systematic variation in the temperature dependence of physiological and ecological traits. Proc Natl Acad Sci USA, 2011, 108(26): 10591-10596

[13]

Eichenberg D, Bowler DE, Bonn A, Bruelheide H, Grescho V, Harter D, Jandt U, May R, Winter M, Jansen F. Widespread decline in Central European plant diversity across six decades. Glob Change Biol, 2021, 27(5): 1097-1110

[14]

Fisher JAD, Frank KT, Petrie B, Leggett WC, Shackell NL. Temporal dynamics within a contemporary latitudinal diversity gradient. Ecol Lett, 2008, 11(9): 883-897

[15]

Freeman BG, Song YL, Feeley KJ, Zhu K. Montane species track rising temperatures better in the tropics than in the temperate zone. Ecol Lett, 2021, 24(8): 1697-1708

[16]

Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH. A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci USA, 2008, 105(22): 7774-7778

[17]

García Molinos J, Halpern BS, Schoeman DS, Brown CJ, Kiessling W, Moore PJ, Pandolfi JM, Poloczanska ES, Richardson AJ, Burrows MT. Climate velocity and the future global redistribution of marine biodiversity. Nat Clim Change, 2016, 6(1): 83-88

[18]

García-Valdés R, Estrada A, Early R, Lehsten V, Morin X. Climate change impacts on long-term forest productivity might be driven by species turnover rather than by changes in tree growth. Glob Ecol Biogeogr, 2020, 29(8): 1360-1372

[19]

Gillooly JF, Allen AP. Linking global patterns in biodiversity to evolutionary dynamics using metabolic theory. Ecology, 2007, 88(8): 1890-1894

[20]

Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. Effects of size and temperature on metabolic rate. Science, 2001, 293(5538): 2248-2251

[21]

Gonzalez A, Cardinale BJ, Allington GRH, Byrnes J, Arthur Endsley K, Brown DG, Hooper DU, Isbell F, O’Connor MI, Loreau M. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology, 2016, 97(8): 1949-1960

[22]

Hagerty SB, van Groenigen KJ, Allison SD, Hungate BA, Schwartz E, Koch GW, Kolka RK, Dijkstra P. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat Clim Change, 2014, 4(10): 903-906

[23]

Harrison S, Spasojevic MJ, Li DJ. Climate and plant community diversity in space and time. Proc Natl Acad Sci USA, 2020, 117(9): 4464-4470

[24]

Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG. Energy, water, and broad-scale geographic patterns of species richness. Ecology, 2003, 84(12): 3105-3117

[25]

Hawkins BA, Albuquerque FS, Araújo MB, Beck J, Bini LM, Cabrero-Sañudo FJ, Castro-Parga I, Diniz-Filho JAF, Ferrer-Castán D, Field R, Gómez JF, Hortal J, Kerr JT, Kitching IJ, León-Cortés JL, Lobo JM, Montoya D, Moreno JC, Olalla-Tárraga , Pausas JG, Qian H, Rahbek C, Rodríguez , Sanders NJ, Williams P. A global evaluation of metabolic theory as an explanation for terrestrial species richness gradients. Ecology, 2007, 88(8): 1877-1888

[26]

Hiddink JG, Ter Hofstede R. Climate induced increases in species richness of marine fishes. Glob Change Biol, 2008, 14(3): 453-460

[27]

Hylander K, Ehrlén J. The mechanisms causing extinction debts. Trends Ecol Evol, 2013, 28(6): 341-346

[28]

Irlich UM, Terblanche JS, Blackburn TM, Chown SL. Insect rate-temperature relationships: environmental variation and the metabolic theory of ecology. Am Nat, 2009, 174(6): 819-835

[29]

Kardgar N, Rahmani R, Zare H, Ghorbani S. Assessing the effect of plot size on species diversity in a mixed oriental beech forest. J for Res, 2024, 36(1): 4

[30]

Kohyama TI, Sheil D, Sun IF, Niiyama K, Suzuki E, Hiura T, Nishimura N, Hoshizaki K, Wu SH, Chao WC, Nur Hajar ZS, Rahajoe JS, Kohyama TS. Contribution of tree community structure to forest productivity across a thermal gradient in eastern Asia. Nat Commun, 2023, 14(11113

[31]

Kreft H, Jetz W. Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA, 2007, 104(145925-5930

[32]

Latimer AM. Geography and resource limitation complicate metabolism-based predictions of species richness. Ecology, 2007, 88(8): 1895-1898

[33]

Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H. A significant upward shift in plant species optimum elevation during the 20th century. Science, 2008, 320(5884): 1768-1771

[34]

Li CX, He HL, Zhang XY, Ren XL, Shi L, Zhang L, Xu Q, Zhang MY, Zhang YH. Long-term leaf nitrogen and phosphorus dynamics and drivers in China’s forests under global change. For Ecosyst, 2025, 13 100325

[35]

Liang JJ, Gamarra JGP, Picard N, Zhou M, Pijanowski B, Jacobs DF, Reich PB, Crowther TW, Nabuurs GJ, de Miguel S, Fang JY, Woodall CW, Svenning JC, Jucker T, Bastin JF, Wiser SK, Slik F, Hérault B, Alberti G, Keppel G, Hengeveld GM, Ibisch PL, Silva CA, Ter Steege H, Peri PL, Coomes DA, Searle EB, von Gadow K, Jaroszewicz B, Abbasi AO, Abegg M, Yao YCA, Aguirre-Gutiérrez J, Zambrano AMA, Altman J, Alvarez-Dávila E, Álvarez-González JG, Alves LF, Amani BHK, Amani CA, Ammer C, Ilondea BA, Antón-Fernández C, Avitabile V, Aymard GA, Azihou AF, Baard JA, Baker TR, Balazy R, Bastian ML, Batumike R, Bauters M, Beeckman H, Benu NMH, Bitariho R, Boeckx P, Bogaert J, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brearley FQ, Briseno-Reyes J, Broadbent EN, Bruelheide H, Bulte E, Catlin AC, Cazzolla Gatti R, César RG, Chen HYH, Chisholm C, Cienciala E, Colletta GD, Corral-Rivas JJ, Cuchietti A, Cuni-Sanchez A, Dar JA, Dayanandan S, de Haulleville T, Decuyper M, Delabye S, Derroire G, DeVries B, Diisi J, Do TV, Dolezal J, Dourdain A, Durrheim GP, Obiang NLE, Ewango CEN, Eyre TJ, Fayle TM, Feunang LFN, Finér L, Fischer M, Fridman J, Frizzera L, de Gasper AL, Gianelle D, Glick HB, Gonzalez-Elizondo MS, Gorenstein L, Habonayo R, Hardy OJ, Harris DJ, Hector A, Hemp A, Herold M, Hillers A, Hubau W, Ibanez T, Imai N, Imani G, Jagodzinski AM, Janecek S, Johannsen VK, Joly CA, Jumbam B, Kabelong BLPR, Kahsay GA, Karminov V, Kartawinata K, Kassi JN, Kearsley E, Kennard DK, Kepfer-Rojas S, Khan ML, Kigomo JN, Kim HS, Klauberg C, Klomberg Y, Korjus H, Kothandaraman S, Kraxner F, Kumar A, Kuswandi R, Lang M, Lawes MJ, Leite RV, Lentner G, Lewis SL, Libalah MB, Lisingo J, López-Serrano PM, Lu HC, Lukina NV, Lykke AM, Maicher V, Maitner BS, Marcon E, Marshall AR, Martin EH, Martynenko O, Mbayu FM, Mbuvi MTE, Meave JA, Merow C, Miscicki S, Moreno VS, Morera A, Mukul SA, Müller JC, Murdjoko A, Nava-Miranda MG, Ndive LE, Neldner VJ, Nevenic RV, Nforbelie LN, Ngoh ML, N’Guessan AE, Ngugi MR, Ngute ASK, Njila ENN, Nyako MC, Ochuodho TO, Oleksyn J, Paquette A, Parfenova EI, Park M, Parren M, Parthasarathy N, Pfautsch S, Phillips OL, Piedade MTF, Piotto D, Pollastrini M, Poorter L, Poulsen JR, Poulsen AD, Pretzsch H, Rodeghiero M, Rolim SG, Rovero F, Rutishauser E, Sagheb-Talebi K, Saikia P, Sainge MN, Salas-Eljatib C, Salis A, Schall P, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Šebeň V, Sellan G, Selvi F, Serra-Diaz JM, Sheil D, Shvidenko AZ, Sist P, Souza AF, Stereńczak KJ, Sullivan MJP, Sundarapandian S, Svoboda M, Swaine MD, Targhetta N, Tchebakova N, Trethowan LA, Tropek R, Mukendi JT, Umunay PM, Usoltsev VA, Vaglio Laurin G, Valentini R, Valladares F, van der Plas F, Vega-Nieva DJ, Verbeeck H, Viana H, Vibrans AC, Vieira SA, Vleminckx J, Waite CE, Wang HF, Wasingya EK, Wekesa C, Westerlund B, Wittmann F, Wortel V, Zawiła-Niedźwiecki T, Zhang CY, Zhao XH, Zhu J, Zhu X, Zhu ZX, Zo-Bi IC, Hui C. Co-limitation towards lower latitudes shapes global forest diversity gradients. Nat Ecol Evol, 2022, 6(10): 1423-1437

[36]

Liu HY, Mi ZR, Lin L, Wang YH, Zhang ZH, Zhang FW, Wang H, Liu LL, Zhu B, Cao GM, Zhao XQ, Sanders NJ, Classen AT, Reich PB, He JS. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc Natl Acad Sci USA, 2018, 115(16): 4051-4056

[37]

Luan L, Jiang YJ, Dini-Andreote F, Crowther TW, Li PF, Bahram M, Zheng J, Xu QS, Zhang XX, Sun B. Integrating pH into the metabolic theory of ecology to predict bacterial diversity in soil. Proc Natl Acad Sci USA, 2023, 120(3 e2207832120

[38]

Mayhew PJ, Bell MA, Benton TG, McGowan AJ. Biodiversity tracks temperature over time. Proc Natl Acad Sci USA, 2012, 109(38): 15141-15145

[39]

Newbold T, Oppenheimer P, Etard A, Williams JJ. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat Ecol Evol, 2020, 4(12): 1630-1638

[40]

Peng SJ, Liu YP, Lyu T, Zhang XL, Li YQ, Wang ZH. Towards an understanding of the latitudinal patterns in thermal tolerance and vulnerability of woody plants under climate warming. Ecography, 2021, 44(12): 1797-1807

[41]

Pfeifer-Meister L, Bridgham SD, Reynolds LL, Goklany ME, Wilson HE, Little CJ, Ferguson A, Johnson BR. Climate change alters plant biogeography in Mediterranean prairies along the West Coast, USA. Glob Change Biol, 2016, 22(2): 845-855

[42]

Pilotto F, Kühn I, Adrian R, Alber R, Alignier A, Andrews C, Bäck J, Barbaro L, Beaumont D, Beenaerts N, Benham S, Boukal DS, Bretagnolle V, Camatti E, Canullo R, Cardoso PG, Ens BJ, Everaert G, Evtimova V, Feuchtmayr H, García-González R, Gómez García D, Grandin U, Gutowski JM, Hadar L, Halada L, Halassy M, Hummel H, Huttunen KL, Jaroszewicz B, Jensen TC, Kalivoda H, Schmidt IK, Kröncke I, Leinonen R, Martinho F, Meesenburg H, Meyer J, Minerbi S, Monteith D, Nikolov BP, Oro D, Ozoliņš D, Padedda BM, Pallett D, Pansera M, Pardal , Petriccione B, Pipan T, Pöyry J, Schäfer SM, Schaub M, Schneider SC, Skuja A, Soetaert K, Spriņģe G, Stanchev R, Stockan JA, Stoll S, Sundqvist L, Thimonier A, Van Hoey G, Van Ryckegem G, Visser ME, Vorhauser S, Haase P. Meta-analysis of multidecadal biodiversity trends in Europe. Nat Commun, 2020, 11(1 3486

[43]

Qian H, Fridley JD, Palmer MW. The latitudinal gradient of species-area relationships for vascular plants of North America. Am Nat, 2007, 170(5): 690-701

[44]

Schluter D. Speciation, ecological opportunity, and latitude (American society of naturalists address). Am Nat, 2016, 187(1): 1-18

[45]

Stegen JC, Enquist BJ, Ferriere R. Advancing the metabolic theory of biodiversity. Ecol Lett, 2009, 12(10): 1001-1015

[46]

Steinbauer MJ, Grytnes JA, Jurasinski G, Kulonen A, Lenoir J, Pauli H, Rixen C, Winkler M, Bardy-Durchhalter M, Barni E, Bjorkman AD, Breiner FT, Burg S, Czortek P, Dawes MA, Delimat A, Dullinger S, Erschbamer B, Felde VA, Fernández-Arberas O, Fossheim KF, Gómez-García D, Georges D, Grindrud ET, Haider S, Haugum SV, Henriksen H, Herreros MJ, Jaroszewicz B, Jaroszynska F, Kanka R, Kapfer J, Klanderud K, Kühn I, Lamprecht A, Matteodo M, di Cella UM, Normand S, Odland A, Olsen SL, Palacio S, Petey M, Piscová V, Sedlakova B, Steinbauer K, Stöckli V, Svenning JC, Teppa G, Theurillat JP, Vittoz P, Woodin SJ, Zimmermann NE, Wipf S. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 2018, 556(7700): 231-234

[47]

Sun HR, Xu ZZ, Jia BR. A compiled soil respiration dataset at different time scales for forest ecosystems across China from 2000 to 2018. Earth Syst Sci Data, 2022, 14(7): 2951-2961

[48]

Sun L, He YY, Cao M, Wang XZ, Zhou X, Yang J, Swenson NG. Tree phytochemical diversity and herbivory are higher in the tropics. Nat Ecol Evol, 2024, 8(8): 1426-1436

[49]

Sun BJ, Lu HL, Cheng KM, Liu WL, Han XZ, Cui LX, Li XH, Li SR, Hao X, Li F, Wu DY, Li T, Zhang YP, Wang JC, Liu P, Du WG. The semi-natural climate chambers across latitudes: a broadly applicable husbandry and experimental system for terrestrial ectotherms under climate change. Adv Sci, 2025, 12(20 2414185

[50]

Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB. Consequences of climate change on the tree of life in Europe. Nature, 2011, 470(7335): 531-534

[51]

Ullah S, Wu JP, Ali Shah J, Wang XM, Lyu YM, Guo ZW, Ali K, Chen DY, Sun H. Tree diversity drives understory carbon storage rather than overstory carbon storage across forest types. J for Res, 2024, 35(1): 125

[52]

Wang ZH, Brown JH, Tang ZY, Fang JY. Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America. Proc Natl Acad Sci USA, 2009, 106(3213388-13392

[53]

Wang SY, Jiménez-Alfaro B, Pan SA, Yu JH, Sanaei A, Sayer EJ, Ye J, Hao ZQ, Fang S, Lin F, Yuan ZQ, Wang XG. Differential responses of forest strata species richness to paleoclimate and forest structure. For Ecol Manag, 2021, 499 119605

[54]

Warton DI, Wright IJ, Falster DS, Westoby M. Bivariate line-fitting methods for allometry. Biol Rev, 2006, 81(2): 259-291

[55]

Watts K, Whytock RC, Park KJ, Fuentes-Montemayor E, MacGregor NA, Duffield S, McGowan PJK. Ecological time lags and the journey towards conservation success. Nat Ecol Evol, 2020, 4(3): 304-311

[56]

Willig MR, Kaufman DM, Stevens RD. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst, 2003, 34(1): 273-309

[57]

Xiao X, Ma ZY, Zhang JB, Sun B, Zhou JZ, Liang YT. Coupling temperature-dependent spatial turnover of microbes and plants using the metabolic theory of ecology. New Phytol, 2023, 238(1): 383-392

[58]

Yasuhara M, Wei CL, Kucera M, Costello MJ, Tittensor DP, Kiessling W, Bonebrake TC, Tabor CR, Feng R, Baselga A, Kretschmer K, Kusumoto B, Kubota Y. Past and future decline of tropical pelagic biodiversity. Proc Natl Acad Sci USA, 2020, 117(23): 12891-12896

[59]

Zhang SH, Shen SZ, Erwin DH. Latitudinal diversity gradient dynamics during Carboniferous to Triassic icehouse and greenhouse climates. Geology, 2022, 50(10): 1166-1171

[60]

Zhang YH, Jin BC, Zhang XL, Wei HH, Chang QQ, Huang FQ, Liu WH, Lv Y, Xu Q, Sun GJ, Cheng H. Grazing alters the relationships between species diversity and biomass during community succession in a semiarid grassland. Sci Total Environ, 2023, 887 164155

[61]

Zhou GY, Houlton BZ, Wang WT, Huang WJ, Xiao Y, Zhang QM, Liu SZ, Cao M, Wang XH, Wang SL, Zhang YP, Yan JH, Liu JX, Tang XL, Zhang DQ. Substantial reorganization of China’s tropical and subtropical forests: based on the permanent plots. Glob Change Biol, 2014, 20(1): 240-250

[62]

Zhou JZ, Deng Y, Shen LN, Wen CQ, Yan QY, Ning DL, Qin YJ, Xue K, Wu LY, He ZL, Voordeckers JW, Nostrand JDV, Buzzard V, Michaletz ST, Enquist BJ, Weiser MD, Kaspari M, Waide R, Yang YF, Brown JH. Temperature mediates continental-scale diversity of microbes in forest soils. Nat Commun, 2016, 7: 12083

[63]

Zhou LH, Liu SS, Shen HH, Zhao MY, Xu LC, Xing AJ, Fang JY. Soil extracellular enzyme activity and stoichiometry in China’s forests. Funct Ecol, 2020, 34(7): 1461-1471

[64]

Zu KL, Lenoir J, Fang JY, Tang ZY, Shen ZH, Ji CJ, Zheng CY, Luo A, Song WQ, Zimmermann NE, Pellissier L, Wang ZH. Elevational shift in seed plant distributions in China’s mountains over the last 70 years. Glob Ecol Biogeogr, 2023, 32(71098-1112

RIGHTS & PERMISSIONS

Northeast Forestry University

PDF

24

Accesses

0

Citation

Detail

Sections
Recommended

/