Differences in drought effects on carbon fluxes in vegetation in arid and humid regions

Danna Chen , Daodao Pan , Enbin Liu , Xiaojun Xu

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 110

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) :110 DOI: 10.1007/s11676-025-01907-x
Original Paper
research-article

Differences in drought effects on carbon fluxes in vegetation in arid and humid regions

Author information +
History +
PDF

Abstract

Drought influences carbon fixation by plants. Therefore, elucidating its impact on carbon fluxes in plants at the ecosystem level is crucial for assessing their role in mitigating climate change. Using carbon fluxes and environmental factor data from FLUXNET sites, we analyzed the influence of drought on carbon fluxes, their drivers, time-lag effects, and recovery times across various climatic regions and seasons. Results showed drought significantly decreased gross primary production (GPP), ecosystem respiration, and net ecosystem productivity in arid regions but slightly increased carbon sequestration in humid regions. Summer droughts negatively affected vegetation carbon fluxes, partly offset by the positive impact of spring droughts. Nonforest carbon fluxes were more susceptible to drought effects than forest fluxes. Soil water content (SWC) was the main influence on changes in arid regions, whereas vapor pressure deficit (VPD) dominated humid regions. Decreased SWC and increased VPD reduced carbon sequestration in arid regions but increased it in humid regions. Increased VPD reduced GPP, leading to forest carbon loss, whereas decreased SWC reduced GPP, leading to nonforest carbon loss. The lag time of the drought effects on carbon fluxes was longer in humid regions (19.44 d) than in arid regions (14.71 d). Compared to nonforest areas (16.74 d and 57 d for drought lag and recovery time, respectively), forest areas had a longer lag (18.81 d) and recovery time (92 d). The findings revealed discrepancies in the main factors regulating vegetation carbon fluxes during droughts between arid and humid regions and between forest and nonforest ecosystems. These insights provide a new perspective on understanding and simulating carbon–climate feedback. Enhancing ecosystem diversity is a feasible measure to increase drought resistance.

Keywords

Carbon sequestration / Regulatory factor / Drought lag time / Recovery time / Climatic regions

Cite this article

Download citation ▾
Danna Chen, Daodao Pan, Enbin Liu, Xiaojun Xu. Differences in drought effects on carbon fluxes in vegetation in arid and humid regions. Journal of Forestry Research, 2025, 36(1): 110 DOI:10.1007/s11676-025-01907-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Altaf Arain M, Xu B, Brodeur JJ, Khomik M, Peichl M, Beamesderfer E, Restrepo-Couple N, Thorne R. Heat and drought impact on carbon exchange in an age-sequence of temperate pine forests. Ecol Process, 2022, 11(1): 7

[2]

Anderegg WRL, Trugman AT, Badgley G, Konings AG, Shaw J. Divergent forest sensitivity to repeated extreme droughts. Nat Clim Chang, 2020, 10(121091-1095

[3]

Anderegg WRL, Chegwidden OS, Badgley G, Trugman AT, Cullenward D, Abatzoglou JT, Hicke JA, Freeman J, Hamman JJ. Future climate risks from stress, insects and fire across US forests. Ecol Lett, 2022, 25(6): 1510-1520

[4]

Bai YH, Tang ZY. Enhanced effects of species richness on resistance and resilience of global tree growth to prolonged drought. Proc Natl Acad Sci U S A, 2024, 121(39 e2410467121

[5]

Bao G, Bao YH, Qin ZH, Xin XP, Bao YL, Bayarsaikan S, Zhou Y, Chuntai B. Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model. Int J Appl Earth Obs Geoinf, 2016, 46: 84-93

[6]

Bastos A, Ciais P, Friedlingstein P, Sitch S, Pongratz J, Fan L, Wigneron JP, Weber U, Reichstein M, Fu Z, Anthoni P, Arneth A, Haverd V, Jain AK, Joetzjer E, Knauer J, Lienert S, Loughran T, McGuire PC, Tian H, Viovy N, Zaehle S. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci Adv, 2020, 6(24 eaba2724

[7]

Breshears DD, Myers OB, Meyer CW, Barnes FJ, Zou CB, Allen CD, McDowell NG, Pockman WT. Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Front Ecol Environ, 2009, 7(4): 185-189

[8]

Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C. How tree roots respond to drought. Front Plant Sci, 2015, 6: 547

[9]

Chen TQ, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. San Francisco California, USA. ACM, pp 785–794. https://doi.org/10.1145/2939672.2939785

[10]

Cheng YM, Liu L, Cheng L, Fa KY, Liu XC, Huo ZL, Huang GH. A shift in the dominant role of atmospheric vapor pressure deficit and soil moisture on vegetation greening in China. J Hydrol, 2022, 615: 128680

[11]

Cherkauer KA, Bowling LC, Lettenmaier DP. Variable infiltration capacity cold land process model updates. Glob Planet Change, 2003, 38(1–2): 151-159

[12]

Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437(7058529-533

[13]

Cleveland RB, Cleveland WS, McRae JE, Terpenning I. STL: a seasonal-trend decomposition procedure based on loess. J Offic Stat, 1990, 6(1): 3-73

[14]

Cook BI, Ault TR, Smerdon JE. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci Adv, 2015, 1(1 e1400082

[15]

Dai AG. Drought under global warming: a review. Wiley Interdiscip Rev Clim Change, 2011, 2(1): 45-65

[16]

Dai EF, Huang Y, Wu Z, Zhao DS. Analysis of spatio-temporal features of a carbon source/sink and its relationship to climatic factors in the Inner Mongolia grassland ecosystem. J Geogr Sci, 2016, 26(3): 297-312

[17]

De Boeck HJ, Dreesen FE, Janssens IA, Nijs I. Whole-system responses of experimental plant communities to climate extremes imposed in different seasons. New Phytol, 2011, 189(3): 806-817

[18]

Deng YH, Wang SJ, Bai XY, Luo GJ, Wu LH, Cao Y, Li HW, Li CJ, Yang YJ, Hu ZY, Tian SQ. Variation trend of global soil moisture and its cause analysis. Ecol Indic, 2020, 110: 105939

[19]

Deng YH, Wang SJ, Bai XY, Luo GJ, Wu LH, Chen F, Wang JF, Li CJ, Yang YJ, Hu ZY, Tian SQ, Lu Q. Vegetation greening intensified soil drying in some semi-arid and arid areas of the world. Agric for Meteorol, 2020, 292: 108103

[20]

Deng Y, Wang XH, Wang K, Ciais P, Tang SC, Jin L, Li LL, Piao SL. Responses of vegetation greenness and carbon cycle to extreme droughts in China. Agric for Meteorol, 2021, 298: 108307

[21]

Deng Y, Wang XH, Lu TP, Du HC, Ciais P, Lin X. Divergent seasonal responses of carbon fluxes to extreme droughts over China. Agric for Meteorol, 2023, 328: 109253

[22]

Desai AR, Richardson AD, Moffat AM, Kattge J, Hollinger DY, Barr A, Falge E, Noormets A, Papale D, Reichstein M, Stauch VJ. Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agric for Meteorol, 2008, 148(6–7): 821-838

[23]

Ding JY, Eldridge D. Intensifying aridity induces tradeoffs among biodiversity and ecosystem services supported by trees. Glob Ecol Biogeogr, 2024, 33(10 e13894

[24]

Ding YB, Xu J, Wang XW, Peng XB, Cai HJ. Spatial and temporal effects of drought on Chinese vegetation under different coverage levels. Sci Total Environ, 2020, 716: 137166

[25]

Domke GM, Oswalt SN, Walters BF, Morin RS. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc Natl Acad Sci USA, 2020, 117(4024649-24651

[26]

Dorji T, Totland Ø, Moe SR, Hopping KA, Pan JB, Klein JA. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Glob Change Biol, 2013, 19(2459-472

[27]

Doughty CE, Metcalfe DB, Girardin CJ, Farfán Amézquita F, Galiano Cabrera D, Huaraca Huasco W, Silva-Espejo JE, Araujo-Murakami A, da Costa MC, Rocha W, Feldpausch TR, Mendoza AM, da Costa AL, Meir P, Phillips OL, Malhi Y. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature, 2015, 519(7541): 78-82

[28]

Fan Y, Miguez-Macho G, Jobbágy EG, Jackson RB, Otero-Casal C. Hydrologic regulation of plant rooting depth. Proc Natl Acad Sci U S A, 2017, 114(40): 10572-10577

[29]

Friedlingstein P, O’Sullivan M, Jones MW, Andrew RM, Gregor L, Hauck J, Le Quéré C, Luijkx IT, Olsen A, Peters GP, Peters W, Pongratz J, Schwingshackl C, Sitch S, Canadell JG, Ciais P, Jackson RB, Alin SR, Alkama R, Arneth A, Arora VK, Bates NR, Becker M, Bellouin N, Bittig HC, Bopp L, Chevallier F, Chini LP, Cronin M, Evans W, Falk S, Feely RA, Gasser T, Gehlen M, Gkritzalis T, Gloege L, Grassi G, Gruber N, Gürses Ö, Harris I, Hefner M, Houghton RA, Hurtt GC, Iida Y, Ilyina T, Jain AK, Jersild A, Kadono K, Kato E, Kennedy D, Klein Goldewijk K, Knauer J, Korsbakken JI, Landschützer P, Lefèvre N, Lindsay K, Liu JJ, Liu Z, Marland G, Mayot N, McGrath MJ, Metzl N, Monacci NM, Munro DR, Nakaoka SI, Niwa Y, O’Brien K, Ono T, Palmer PI, Pan NQ, Pierrot D, Pocock K, Poulter B, Resplandy L, Robertson E, Rödenbeck C, Rodriguez C, Rosan TM, Schwinger J, Séférian R, Shutler JD, Skjelvan I, Steinhoff T, Sun Q, Sutton AJ, Sweeney C, Takao S, Tanhua T, Tans PP, Tian XJ, Tian HQ, Tilbrook B, Tsujino H, Tubiello F, van der Werf GR, Walker AP, Wanninkhof R, Whitehead C, Willstrand Wranne A, Wright R, Yuan WP, Yue C, Yue X, Zaehle S, Zeng JY, Zheng B. Global carbon budget 2022. Earth Syst Sci Data, 2022, 14(11): 4811-4900

[30]

Fu YH, Zhao HF, Piao SL, Peaucelle M, Peng SS, Zhou GY, Ciais P, Huang MT, Menzel A, Peñuelas J, Song Y, Vitasse Y, Zeng ZZ, Janssens IA. Declining global warming effects on the phenology of spring leaf unfolding. Nature, 2015, 526(7571): 104-107

[31]

Fu Z, Stoy PC, Poulter B, Gerken T, Zhang Z, Wakbulcho G, Niu SL. Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange. Glob Chang Biol, 2019, 25(10): 3381-3394

[32]

Gampe D, Zscheischler J, Reichstein M, O’Sullivan M, Smith WK, Sitch S, Buermann W. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat Clim Change, 2021, 11(9): 772-779

[33]

Ge CH, Sun P, Yao R, Zhang YY, Shen H, Yang HL. Drivers of ecological drought recovery: insights from meteorological and soil drought impact. J Hydrol, 2025, 646: 132324

[34]

Germon A, Laclau JP, Robin A, Jourdan C. Tamm review: deep fine roots in forest ecosystems: why dig deeper?. For Ecol Manage, 2020, 466: 118135

[35]

Gong HX, Wang GY, Fan CQ, Zhuo XW, Sha LN, Kuang ZX, Bi JR, Cheng TT. Temporal accumulation and lag effects of precipitation on carbon fluxes in terrestrial ecosystems across semi-arid regions in China. Agric for Meteorol, 2024, 356: 110189

[36]

Green JK, Ballantyne A, Abramoff R, Gentine P, Makowski D, Ciais P. Surface temperatures reveal the patterns of vegetation water stress and their environmental drivers across the tropical Americas. Glob Chang Biol, 2022, 28(9): 2940-2955

[37]

Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, Siegwolf RTW, Sperry JS, McDowell NG. Plant responses to rising vapor pressure deficit. New Phytol, 2020, 226(61550-1566

[38]

Gupta AK, Nadarajah S. Handbook of beta distribution and its applications, 2004, Boca Raton, CRC Press

[39]

He XG, Pan M, Wei ZW, Wood EF, Sheffield J. A global drought and flood catalogue from 1950 to 2016. Bull Am Meteorol Soc, 2020, 101(5): E508-E535

[40]

Hisano M, Ghazoul J, Chen XL, Chen HYH. Functional diversity enhances dryland forest productivity under long-term climate change. Sci Adv, 2024, 10(17 eadn4152

[41]

Hoerling M, Eischeid J, Kumar A, Leung R, Mariotti A, Mo K, Schubert S, Seager R. Causes and predictability of the 2012 great Plains drought. Bull Am Meteorol Soc, 2014, 95(2): 269-282

[42]

Hoover DL, Knapp AK, Smith MD. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology, 2014, 95(9): 2646-2656

[43]

Huang MT, Zhai PM. Impact of extreme seasonal drought on ecosystem carbon-water coupling across China. Adv Clim Change Res, 2024, 15(5): 914-923

[44]

Humphrey V, Zscheischler J, Ciais P, Gudmundsson L, Sitch S, Seneviratne SI. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature, 2018, 560(7720): 628-631

[45]

Jas K, Dodagoudar GR. Explainable machine learning model for liquefaction potential assessment of soils using XGBoost-SHAP. Soil Dyn Earthq Eng, 2023, 165: 107662

[46]

Jiang HM, Zhang DG, Wang RJ, He XS, Cao L, Wang CG. Comparison of different ecosystem respiration models and its application in carbon cycle research over semi-arid grassland during growing season. Acta Sci Nat Univ Pekin, 2018, 54(3): 593-604

[47]

Kannenberg SA, Anderegg WRL, Barnes ML, Dannenberg MP, Knapp AK. Dominant role of soil moisture in mediating carbon and water fluxes in dryland ecosystems. Nat Geosci, 2024, 17(138-43

[48]

Keenan TF, Williams CA. The terrestrial carbon sink. Annu Rev Environ Resour, 2018, 43(1): 219-243

[49]

Knapp AK, Smith MD. Variation among biomes in temporal dynamics of aboveground primary production. Science, 2001, 291(5503): 481-484

[50]

Kühnhammer K, van Haren J, Kübert A, Bailey K, Dubbert M, Hu J, Ladd SN, Meredith LK, Werner C, Beyer M. Deep roots mitigate drought impacts on tropical trees despite limited quantitative contribution to transpiration. Sci Total Environ, 2023, 893: 164763

[51]

Li P, Sayer EJ, Jia Z, Liu WX, Wu YT, Yang S, Wang CZ, Yang L, Chen DM, Bai YF, Liu LL. Deepened winter snow cover enhances net ecosystem exchange and stabilizes plant community composition and productivity in a temperate grassland. Glob Chang Biol, 2020, 26(5): 3015-3027

[52]

Li CX, Gu XH, Bai WK, Slater LJ, Li JF, Kong DD, Liu JY, Li YN. Asymmetric response of short- and long-duration dry spells to warming during the warm-rain season over Eastern monsoon China. J Hydrol, 2021, 603: 127114

[53]

Li Y, Zhang W, Schwalm CR, Gentine P, Smith WK, Ciais P, Kimball JS, Gazol A, Kannenberg SA, Chen AP, Piao SL, Liu HY, Chen DL, Wu XC. Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems. Nat Clim Change, 2023, 13(2182-188

[54]

Lian X, Piao SL, Li LZX, Li Y, Huntingford C, Ciais P, Cescatti A, Janssens IA, Peñuelas J, Buermann W, Chen AP, Li XY, Myneni RB, Wang XH, Wang YL, Yang YT, Zeng ZZ, Zhang YQ, McVicar TR. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci Adv, 2020, 6(1 eaax0255

[55]

Lian X, Jeong S, Park CE, Xu H, Li LZX, Wang T, Gentine P, Peñuelas J, Piao SL. Biophysical impacts of northern vegetation changes on seasonal warming patterns. Nat Commun, 2022, 13(13925

[56]

Liang X, Wood EF, Lettenmaier DP. Surface soil moisture parameterization of the VIC-2L model: evaluation and modification. Glob Planet Change, 1996, 13(1–4195-206

[57]

Liu LB, Gudmundsson L, Hauser M, Qin DH, Li SC, Seneviratne SI. Revisiting assessments of ecosystem drought recovery. Environ Res Lett, 2019, 14(11): 114028

[58]

Liu LB, Gudmundsson L, Hauser M, Qin DH, Li SC, Seneviratne SI. Soil moisture dominates dryness stress on ecosystem production globally. Nat Commun, 2020, 11(14892

[59]

Liu YJ, Zheng JH, Guan JY, Han WQ, Liu L. Concurrent and lagged effects of drought on grassland net primary productivity: a case study in Xinjiang, China. Front Ecol Evol, 2023, 11: 1131175

[60]

Liu M, Trugman AT, Peñuelas J, Anderegg WRL. Climate-driven disturbances amplify forest drought sensitivity. Nat Clim Change, 2024, 14(7746-752

[61]

Loreau M, De Mazancourt C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett, 2013, 16: 106-115

[62]

Lu HB, Qin ZC, Lin SR, Chen XZ, Chen BZ, He B, Wei J, Yuan WP. Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency. Nat Commun, 2022, 13(11653

[63]

Lu J, Peng J, Li G, Guan J, Han W, Liu L, Wang R, Zheng J. Assessment of time-lag and cumulative effects of drought on gross primary productivity of grassland in Central Asia from 1982 to 2018. Acta Ecol Sinica, 2023, 43: 9745-9757

[64]

Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, Himmelfarb J, Bansal N, Lee SI. From local explanations to global understanding with explainable AI for trees. Nat Mach Intell, 2020, 2(156-67

[65]

Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, Luke McCormack M, Hedin LO. Evolutionary history resolves global organization of root functional traits. Nature, 2018, 555(7694): 94-97

[66]

Meng Y, Jiang P, Fang Y. Contrasting impacts of vapor pressure deficit on gross primary productivity in two typical grassland ecosystems in China. Chin J Ecol, 2020, 39(11): 3633-3642

[67]

Miguez-Macho G, Fan Y. Spatiotemporal origin of soil water taken up by vegetation. Nature, 2021, 598(7882): 624-628

[68]

Miller DL, Wolf S, Fisher JB, Zaitchik BF, Xiao JF, Keenan TF. Increased photosynthesis during spring drought in energy-limited ecosystems. Nat Commun, 2023, 14(1): 7828

[69]

Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300(56251560-1563

[70]

Novick KA, Ficklin DL, Stoy PC, Williams CA, Bohrer G, Oishi AC, Papuga SA, Blanken PD, Noormets A, Sulman BN, Scott RL, Wang LX, Phillips RP. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat Clim Change, 2016, 6(11): 1023-1027

[71]

O S, Park SK. Global ecosystem responses to flash droughts are modulated by background climate and vegetation conditions. Commun Earth Environ, 2024, 5: 88

[72]

O’Connor CM, Norris DR, Crossin GT, Cooke SJ. Biological carryover effects: linking common concepts and mechanisms in ecology and evolution. Ecosphere, 2014, 5(3): 1-11

[73]

Park Williams A, Cook ER, Smerdon JE, Cook BI, Abatzoglou JT, Bolles K, Baek SH, Badger AM, Livneh B. Large contribution from anthropogenic warming to an emerging North American megadrought. Science, 2020, 368(6488314-318

[74]

Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci, 2007, 11(5): 1633-1644

[75]

Peng J, Wu CY, Zhang XY, Wang XY, Gonsamo A. Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere. Glob Chang Biol, 2019, 25(6): 2174-2188

[76]

Peng JL, Tang JW, Xie SD, Wang YH, Liao JQ, Chen C, Sun CL, Mao JH, Zhou QP, Niu SL. Evidence for the acclimation of ecosystem photosynthesis to soil moisture. Nat Commun, 2024, 15(1): 9795

[77]

Piao SL, Wang XH, Wang K, Li XY, Bastos A, Canadell JG, Ciais P, Friedlingstein P, Sitch S. Interannual variation of terrestrial carbon cycle: issues and perspectives. Glob Chang Biol, 2020, 26(1300-318

[78]

Pierret A, Maeght JL, Clément C, Montoroi JP, Hartmann C, Gonkhamdee S. Understanding deep roots and their functions in ecosystems: an advocacy for more unconventional research. Ann Bot, 2016, 118(4): 621-635

[79]

Qiu RN, Han G, Li SW, Tian F, Ma X, Gong W. Soil moisture dominates the variation of gross primary productivity during hot drought in drylands. Sci Total Environ, 2023, 899: 165686

[80]

Quan Q, Tian DS, Luo YQ, Zhang FY, Crowther TW, Zhu K, Chen HYH, Zhou QP, Niu SL. Water scaling of ecosystem carbon cycle feedback to climate warming. Sci Adv, 2019, 5(8 eaav1131

[81]

R Core Team (2024) R: a language and platform for statistical computing. R Foundation of Statistical Computing, Vienna, Austria. https://www.r-project.org

[82]

Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol, 2005, 11(9): 1424-1439

[83]

Rocha SMG, Vidaurre GB, Pezzopane JEM, Almeida MNF, Carneiro RL, Campoe OC, Scolforo HF, Alvares CA, Neves JCL, Xavier AC, Figura MA. Influence of climatic variations on production, biomass and density of wood in Eucalyptus clones of different species. For Ecol Manage, 2020, 473: 118290

[84]

Rodríguez-Pérez R, Bajorath J. Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions. J Comput Aided Mol des, 2020, 34(101013-1026

[85]

Saiki ST, Ishida A, Yoshimura K, Yazaki K. Physiological mechanisms of drought-induced tree die-off in relation to carbon, hydraulic and respiratory stress in a drought-tolerant woody plant. Sci Rep, 2017, 7(12995

[86]

Schnabel F, Liu XJ, Kunz M, Barry KE, Bongers FJ, Bruelheide H, Fichtner A, Härdtle W, Li S, Pfaff CT, Schmid B, Schwarz JA, Tang ZY, Yang B, Bauhus J, von Oheimb G, Ma KP, Wirth C. Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment. Sci Adv, 2021, 7(51eabk1643

[87]

Schwalm CR, Williams CA, Schaefer K, Arneth A, Bonal D, Buchmann N, Chen JQ, Law BE, Lindroth A, Luyssaert S, Reichstein M, Richardson AD. Assimilation exceeds respiration sensitivity to drought: a FLUXNET synthesis. Glob Change Biol, 2010, 16(2657-670

[88]

Schwalm CR, Anderegg WRL, Michalak AM, Fisher JB, Biondi F, Koch G, Litvak M, Ogle K, Shaw JD, Wolf A, Huntzinger DN, Schaefer K, Cook R, Wei YX, Fang YY, Hayes D, Huang MY, Jain A, Tian HQ. Global patterns of drought recovery. Nature, 2017, 548(7666): 202-205

[89]

Shao XM, Zhang YQ, Ma N, Zhang XZ, Tian J, Xu ZW, Liu CM. Drought-induced ecosystem resistance and recovery observed at 118 flux tower stations across the globe. Agric for Meteorol, 2024, 356 110170

[90]

Sheffield J, Goteti G, Wen FH, Wood EF. A simulated soil moisture based drought analysis for the United States. J Geophys Res Atmos, 2004, 109(D24): D24108

[91]

Si WY, Wu ZT, Du ZQ, Liang HX, Lei TJ, Sun B. Spatiotemporal characteristics of net ecosystem exchange in the Beijing-Tianjin sand source region and its response to drought. CATENA, 2024, 242: 108076

[92]

Sun Y, Fu R, Dickinson R, Joiner J, Frankenberg C, Gu LH, Xia YL, Fernando N. Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: insights from two contrasting extreme events. J Geophys Res Biogeosci, 2015, 120(112427-2440

[93]

Sun L, Yang L, Chen LD, Zhao FK, Li SJ. Hydraulic redistribution and its contribution to water retention during short-term drought in the summer rainy season in a humid area. J Hydrol, 2018, 566: 377-385

[94]

Svoboda M, LeComte D, Hayes M, Heim R, Gleason K, Angel J, Rippey B, Tinker R, Palecki M, Stooksbury D, Miskus D, Stephens S. The drought monitor. Bull Amer Meteorol Soc, 2002, 83(81181-1190

[95]

Tang JW, Niu B, Hu ZG, Zhang XZ. Increasing susceptibility and shortening response time of vegetation productivity to drought from 2001 to 2021. Agric for Meteorol, 2024, 352: 110025

[96]

Tong B, Guo JP, Xu H, Wang YJ, Li HR, Bian LG, Zhang J, Zhou SH. Effects of soil moisture, net radiation, and atmospheric vapor pressure deficit on surface evaporation fraction at a semi-arid grass site. Sci Total Environ, 2022, 849: 157890

[97]

Vicente-Serrano SM, Gouveia C, Camarero JJ, Beguería S, Trigo R, López-Moreno JI, Azorín-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A. Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci U S A, 2013, 110(1): 52-57

[98]

Wang ZG, Wang CK. Dynamics of nonstructural carbohydrates during drought and subsequent recovery: a global meta-analysis. Agric for Meteorol, 2025, 363: 110429

[99]

Wang XW, Xie HJ, Guan HD, Zhou XB. Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions. J Hydrol, 2007, 340(1–212-24

[100]

Wang ZL, Lai CG, Chen XH, Yang B, Zhao SW, Bai XY. Flood hazard risk assessment model based on random forest. J Hydrol, 2015, 527: 1130-1141

[101]

Wang XY, Wang T, Guo H, Liu D, Zhao YT, Zhang TT, Liu Q, Piao SL. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Glob Change Biol, 2018, 24(41651-1662

[102]

Wang H, Yan SJ, Ciais P, Wigneron JP, Liu LB, Li Y, Fu Z, Ma HL, Liang Z, Wei FL, Wang YY, Li SC. Exploring complex water stress-gross primary production relationships: impact of climatic drivers, main effects, and interactive effects. Glob Chang Biol, 2022, 28(13): 4110-4123

[103]

Wang L, Dai YX, Zhang JS, Meng P, Wan XC. Xylem structure and hydraulic characteristics of deep roots, shallow roots and branches of walnut under seasonal drought. BMC Plant Biol, 2022, 22(1): 440

[104]

Wang JM, Ouyang W, Liu XY, Wang L. Monitoring hydrological changes with satellite data: spring thaw’s effect on soil moisture and groundwater in seasonal freezing-thawing zones. J Hydrol, 2023, 626: 130365

[105]

Wei XN, He W, Zhou YL, Ju WM, Xiao JF, Li X, Liu YB, Xu SH, Bi WJ, Zhang XY, Cheng N. Global assessment of lagged and cumulative effects of drought on grassland gross primary production. Ecol Indic, 2022, 136: 108646

[106]

Wen XF, Wang HM, Wang JL, Yu GR, Sun XM. Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003–2007. Biogeosciences, 2010, 7(1357-369

[107]

Wolf S, Paul-Limoges E. Drought and heat reduce forest carbon uptake. Nat Commun, 2023, 14(16217

[108]

Wolf S, Keenan TF, Fisher JB, Baldocchi DD, Desai AR, Richardson AD, Scott RL, Law BE, Litvak ME, Brunsell NA, Peters W, van der Laan-Luijkx IT. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc Natl Acad Sci U S A, 2016, 113(215880-5885

[109]

Wu DH, Zhao X, Liang SL, Zhou T, Huang KC, Tang BJ, Zhao WQ. Time-lag effects of global vegetation responses to climate change. Glob Chang Biol, 2015, 21(9): 3520-3531

[110]

Wu TT, Xu L, Chen NC. Spatial pattern and attribution of ecosystem drought recovery in China. J Hydrol, 2024, 638: 131578

[111]

Xie SD, Mo XG, Liu SX, Hu S. Plant hydraulics improves predictions of ET and GPP responses to drought. Water Resour Res, 2023, 59(5 e2022WR033402

[112]

Xu CG, McDowell NG, Fisher RA, Wei L, Sevanto S, Christoffersen BO, Weng ES, Middleton RS. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat Clim Change, 2019, 9(12): 948-953

[113]

Xu B, Altaf Arain M, Andrew Black T, Law BE, Pastorello GZ, Chu HS. Seasonal variability of forest sensitivity to heat and drought stresses: a synthesis based on carbon fluxes from North American forest ecosystems. Glob Chang Biol, 2020, 26(2901-918

[114]

Xu HJ, Wang XP, Zhao CY. Drought sensitivity of vegetation photosynthesis along the aridity gradient in northern China. Int J Appl Earth Obs Geoinf, 2021, 102: 102418

[115]

Xu H, Zhang ZQ, Oren R, Wu XY. Hyposensitive canopy conductance renders ecosystems vulnerable to meteorological droughts. Glob Chang Biol, 2023, 29(7): 1890-1904

[116]

Xu SX, Wang YH, Liu Y, Li JX, Qian KX, Yang XY, Ma XF. Evaluating the cumulative and time-lag effects of vegetation response to drought in Central Asia under changing environments. J Hydrol, 2023, 627: 130455

[117]

Yan WM, Zhong Y, Shangguan ZP. Responses of different physiological parameter thresholds to soil water availability in four plant species during prolonged drought. Agric for Meteorol, 2017, 247: 311-319

[118]

Yan F, Song K, Liu Y, Chen SW, Chen JY. Predictions and mechanism analyses of the fatigue strength of steel based on machine learning. J Mater Sci, 2020, 55(3115334-15349

[119]

Yang SS, Zhang JH, Zhang S, Wang JW, Bai Y, Yao FM, Guo HD. The potential of remote sensing-based models on global water-use efficiency estimation: an evaluation and intercomparison of an ecosystem model (BESS) and algorithm (MODIS) using site level and upscaled eddy covariance data. Agric for Meteorol, 2020, 287: 107959

[120]

Yang YH, Yin JB, Kang SY, Slater LJ, Gu XH, Volchak A. Quantifying the drivers of terrestrial drought and water stress impacts on carbon uptake in China. Agric for Meteorol, 2024, 344: 109817

[121]

Yao Y, Liu YX, Fu BJ, Wang YJ, Wang YP, Chen P, Zhan TY. A warmer winter followed by a colder summer contributed to a longer recovery time in the high latitudes of Northeast China. Agric for Meteorol, 2022, 321: 108979

[122]

Yao Y, Liu YX, Zhou S, Song JX, Fu BJ. Soil moisture determines the recovery time of ecosystems from drought. Glob Chang Biol, 2023, 29(13): 3562-3574

[123]

Yao Y, Fu BJ, Liu YX, Zhang Y, Ding JY, Li Y, Zhou S, Song JX, Wang S, Li CJ, Zhao WW. Compound hot-dry events greatly prolong the recovery time of dryland ecosystems. Natl Sci Rev, 2024, 11(10 nwae274

[124]

Yuan B, Guo SC, Zhang XG, Mu HW, Cao SP, Xia ZL, Pan XQ, Du PJ. Quantifying the drought sensitivity of vegetation types in northern China from 1982 to 2022. Agric for Meteorol, 2024, 359: 110293

[125]

Zhang M, Yuan X. Rapid reduction in ecosystem productivity caused by flash droughts based on decade-long FLUXNET observations. Hydrol Earth Syst Sci, 2020, 24(115579-5593

[126]

Zhang Q, Kong DD, Singh VP, Shi PJ. Response of vegetation to different time-scales drought across China: spatiotemporal patterns, causes and implications. Glob Planet Change, 2017, 152: 1-11

[127]

Zhang FY, Quan Q, Ma FF, Tian DS, Zhou QP, Niu SL. Differential responses of ecosystem carbon flux components to experimental precipitation gradient in an alpine meadow. Funct Ecol, 2019, 33(5889-900

[128]

Zhang LB, Ameca EI, Cowlishaw G, Pettorelli N, Foden W, Mace GM. Global assessment of primate vulnerability to extreme climatic events. Nat Clim Change, 2019, 9(7): 554-561

[129]

Zhang JY, Ma XL, Zhang JL, Sun DL, Zhou XZ, Mi CL, Wen HJ. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. J Environ Manage, 2023, 332: 117357

[130]

Zhang WQ, Luo GP, Yuan XL, Li CF, Xie MJ, Wang YG, Ma XF, Shi HY, Hamdi R, Hellwich O, Ma XM, Termonia P, De Maeyer P. New data-driven method for estimation of net ecosystem carbon exchange at meteorological stations effectively increases the global carbon flux data. Meth Ecol Evol, 2023, 14(92449-2463

[131]

Zhang LM, Yuan F, He XG. Probabilistic assessment of global drought recovery and its response to precipitation changes. Geophys Res Lett, 2024, 51(1 e2023GL106067

[132]

Zhang SH, Chen YS, Zhou XB, Zhu B. Spatial patterns and drivers of ecosystem multifunctionality in China: Arid vs. humid regions. Sci Total Environ, 2024, 920: 170868

[133]

Zhang WQ, Luo GP, Hamdi R, Ma XM, Termonia P, De Maeyer P. Drought changes the dominant water stress on the grassland and forest production in the Northern Hemisphere. Agric for Meteor, 2024, 345: 109831

[134]

Zhao MS, Running SW. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 2010, 329(5994940-943

[135]

Zhao AZ, Yu QY, Feng LL, Zhang AB, Pei T. Evaluating the cumulative and time-lag effects of drought on grassland vegetation: a case study in the Chinese Loess Plateau. J Environ Manage, 2020, 261: 110214

[136]

Zheng Y, Shen RQ, Wang YW, Li XQ, Liu SG, Liang SL, Chen JM, Ju WM, Zhang L, Yuan WP. Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst Sci Data, 2020, 12(42725-2746

[137]

Zheng C, Wang SQ, Chen JH, Xiang N, Sun LG, Chen B, Fu Z, Zhu K, He XL. Divergent impacts of VPD and SWC on ecosystem carbon-water coupling under different dryness conditions. Sci Total Environ, 2023, 905: 167007

[138]

Zhong ZQ, He B, Wang YP, Chen HW, Chen DL, Fu YH, Chen YN, Guo LL, Deng Y, Huang L, Yuan WP, Hao XM, Tang R, Liu HM, Sun LY, Xie XM, Zhang YF. Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity. Sci Adv, 2023, 9(32 eadf3166

[139]

Zhou J, Zhang ZQ, Sun G, Fang XR, Zha TG, McNulty S, Chen JQ, Jin Y, Noormets A. Response of ecosystem carbon fluxes to drought events in a poplar plantation in Northern China. For Ecol Manage, 2013, 300: 33-42

[140]

Zhou S, Zhang Y, Park Williams A, Gentine P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci Adv, 2019, 5(1 eaau5740

[141]

Zhou H, Yue X, Lei YD, Zhang TY, Tian CG, Ma YM, Cao Y. Responses of gross primary productivity to diffuse radiation at global FLUXNET sites. Atmos Environ, 2021, 244: 117905

[142]

Zhu YX, Zheng ZT, Zhao G, Zhu JT, Zhao B, Sun YH, Gao J, Zhang YJ. Evapotranspiration increase is more sensitive to vegetation greening than to vegetation type conversion in arid and semi-arid regions of China. Glob Planet Change, 2024, 244: 104634

[143]

Zscheischler J, Mahecha MD, von Buttlar J, Harmeling S, Jung M, Rammig A, Randerson JT, Schölkopf B, Seneviratne SI, Tomelleri E, Zaehle S, Reichstein M. A few extreme events dominate global interannual variability in gross primary production. Environ Res Lett, 2014, 9(3035001

RIGHTS & PERMISSIONS

Northeast Forestry University

PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

/