Drought impacts on carbon fluxes in diverse warm temperate natural forests

Chongyu Yan , Shirong Liu , Xiaodong Niu , Zhi Chen , Zhicheng Chen , Xiaojing Liu , Guirui Yu

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 108

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) :108 DOI: 10.1007/s11676-025-01904-0
Original Paper
research-article

Drought impacts on carbon fluxes in diverse warm temperate natural forests

Author information +
History +
PDF

Abstract

Frequent droughts pose considerable threat to global forest carbon uptake, but little is known about the response of forest carbon fluxes in climatic transition zones to seasonal drought. In this study, the responses of carbon fluxes to seasonal drought in two natural forests (Quercus aliena var. acute serrata Maxim and Pinus tabuliformis Carr.) in the Baotianman Nature Reserve were investigated. The Q. aliena forest exhibited a high resilience with stable gross primary productivity (GPP). However, ecosystem respiration (Re) significantly declined by 18.4% compared with normal years, leading to an increase in net carbon sequestration capacity of 4.1%. This resilience was attributed to its deep root system accessing soil water (SWC50cm) to sustain stomatal openness, coupled with the efficient utilization of photosynthetically active radiation to drive photosynthesis. In contrast, the P. tabuliformis forest, which relied on shallow soil moisture (SWC20cm), experienced simultaneous decreases in both GPP and Re during drought, with a sharply greater decrease in GPP, resulting in low net carbon sink capacity. Further analysis revealed that the Q. aliena forest prioritized carbon assimilation through a deep water-stomatal synergy strategy (anisohydric behavior), whereas the P. tabuliformis forest adopted an isohydric strategy favoring water conservation at the expense of carbon fixation efficiency. These findings highlight distinct mechanisms underlying drought adaptation between forest types, providing critical insight into optimizing forest carbon cycle models and selecting drought-resistant species under the influence of climate change.

Keywords

Forest / Carbon fluxes / Eddy covariance / Drought / Resistance

Cite this article

Download citation ▾
Chongyu Yan, Shirong Liu, Xiaodong Niu, Zhi Chen, Zhicheng Chen, Xiaojing Liu, Guirui Yu. Drought impacts on carbon fluxes in diverse warm temperate natural forests. Journal of Forestry Research, 2025, 36(1): 108 DOI:10.1007/s11676-025-01904-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aadhar S, Mishra V (2020) On the projected decline in droughts over south Asia in CMIP6 multimodel ensemble. J Geophys Res Atmos 125(20): e2020JD033587. https://doi.org/10.1029/2020JD033587

[2]

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Ted Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag, 2010, 259(4): 660-684

[3]

Baldocchi D. ‘breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot, 2008, 56(1): 1

[4]

Barr AG, Black TA, Hogg EH, Griffis TJ, Morgenstern K, Kljun N, Theede A, Nesic Z. Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003. Glob Change Biol, 2007, 13(3561-576

[5]

Beniston M. The 2003 heat wave in Europe: a shape of things to come? an analysis based on Swiss climatological data and model simulations. Geophys Res Lett, 2004, 31(2): L02202

[6]

Bonal D, Bosc A, Ponton S, Goret JY, Burban B, Gross P, Bonnefond JM, Elbers J, Longdoz B, Epron D, Guehl JM, Granier A. Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. Glob Change Biol, 2008, 14(81917-1933

[7]

Chang HN, An JE, Roh Y, Son Y. Experimental warming and drought treatments reduce physiological activities and increase mortality of Pinus koraiensis seedlings. Plant Ecol, 2020, 221(7): 515-527

[8]

Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE. Global convergence in the vulnerability of forests to drought. Nature, 2012, 491: 752-755

[9]

Domec JC, Johnson DM. Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric versus anisohydric behavior of Vitis vinifera L. cultivars?. Tree Physiol, 2012, 32(3): 245-248

[10]

Dong YL, Yu Z, Agathokleous E, Zhou GY, Liu SR. Pitfalls in forest carbon sink projection. J for Res, 2024, 35(1): 87

[11]

Ewers BE, MacKay DS, Samanta S. Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species. Tree Physiol, 2007, 27(111-24

[12]

Farooqi TJA, Li XH, Yu Z, Liu SR, Sun OJX. Reconciliation of research on forest carbon sequestration and water conservation. J for Res, 2021, 32(1): 7-14

[13]

Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC. Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science, 1996, 271(5255): 1576-1578

[14]

Granier A, Reichstein M, Bréda N, Janssens IA, Falge E, Ciais P, Grünwald T, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Facini O, Grassi G, Heinesch B, Ilvesniemi H, Keronen P, Knohl A, Köstner B, Lagergren F, Lindroth A, Longdoz B, Loustau D, Mateus J, Montagnani L, Nys C, Moors E, Papale D, Peiffer M, Pilegaard K, Pita G, Pumpanen J, Rambal S, Rebmann C, Rodrigues A, Seufert G, Tenhunen J, Vesala T, Wang Q. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric for Meteor, 2007, 143(1–2): 123-145

[15]

Grünzweig JM, Lin T, Rotenberg E, Schwartz A, Yakir D. Carbon sequestration in arid-land forest. Glob Change Biol, 2003, 9(5): 791-799

[16]

Gu LH, Falge EM, Boden T, Baldocchi DD, Black TA, Saleska SR, Suni T, Verma SB, Vesala T, Wofsy SC, Xu LK. Objective threshold determination for nighttime eddy flux filtering. Agric for Meteor, 2005, 128(3–4): 179-197

[17]

Gu FX, Yu GR, Wen XF, Tao B, Li KR, Liu YF. Drought effects on carbon exchange in a subtropical coniferous plantation in China. J Plant Ecol (Chinese Version), 2008, 32(5): 1041

[18]

Haile GG, Tang QH, Li WH, Liu XC, Zhang XJ. Drought: progress in broadening its understanding. Wires Water, 2020, 7(2 e1407

[19]

Hsu PK, Takahashi Y, Merilo E, Costa A, Zhang L, Kernig K, Lee KH, Schroeder JI. Raf-like kinases and receptor-like (pseudo)kinase GHR1 are required for stomatal vapor pressure difference response. Proc Natl Acad Sci USA, 2021, 118(47 e2107280118

[20]

Huang MT, Piao SL, Sun Y, Ciais P, Cheng L, Mao JF, Poulter B, Shi XY, Zeng ZZ, Wang YP. Change in terrestrial ecosystem water-use efficiency over the last three decades. Glob Change Biol, 2015, 21(62366-2378

[21]

Hutyra LR, Munger JW, Saleska SR, Gottlieb E, Daube BC, Dunn AL, Amaral DF, de Camargo PB, Wofsy SC. Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. J Geophys Res Biogeosci, 2007, 112(G3): G03008

[22]

IPCC (2007) Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, p 99.

[23]

Jarvis PG, McNaughton KG. Stomatal control of transpiration: scaling up from leaf to region. Advances in Ecological Research Academic Press, 1986, 15: 1-49

[24]

Karl TR, Knight RW, Plummer N. Trends in high-frequency climate variability in the twentieth century. Nature, 1995, 377(6546217-220

[25]

Lambers H, Chapin III FS, Pons TL (2008) Plant physiological ecology. Springer Science & Business Media.

[26]

Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw UKT, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric for Meteor, 2002, 113(1–4): 97-120

[27]

Lee H, Jeon J, Kang M, Cho S, Park J, Lee MS, Lee H, Kim D, Kim HS. The resilience of the carbon cycles of temperate coniferous and broadleaved forests to drought. For Ecol Manag, 2021, 491 119178

[28]

Liu CF, Zhang ZQ, Sun G, Zha TG, Zhu JZ, Shen LH, Chen J, Fang XR, Chen JQ. Quantifying evapotranspiration and biophysical regulations of a poplar plantation assessed by eddy covariance and sap-flow methods. J Plant Ecol (Chinese Version), 2009, 33(4): 706

[29]

Ma LL, Ma J, Yan P, Tian F, Peñuelas J, Rao MP, Fu YS, Hu ZH. Planted forests in China have higher drought risk than natural forests. Glob Chang Biol, 2025, 31(2 e70055

[30]

Mahlstein I, Daniel JS, Solomon S. Pace of shifts in climate regions increases with global temperature. Nature Clim Change, 2013, 3(8739-743

[31]

Mata-González R, Hovland M, Abdallah MAB, Martin DW, Noller JS. Nutrient uptake and gas exchange of Great Basin plants provide insight into drought adaptations and coexistence. J Plant Ecol, 2021, 14(5): 854-869

[32]

McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. New Phytol, 2008, 178(4): 719-739

[33]

Meir P, Woodward FI. Amazonian rain forests and drought: response and vulnerability. New Phytol, 2010, 187(3): 553-557

[34]

Meir P, Metcalfe DB, Costa AL, Fisher RA. The fate of assimilated carbon during drought: impacts on respiration in Amazon rainforests. Philos Trans R Soc Lond B Biol Sci, 2008, 363(1498): 1849-1855

[35]

Mi N, Wen XF, Cai F, Wang Y, Zhang YS. Effects of seasonal drought on the water use efficiency of Qianyanzhou plantation. Scientia Silvae Sinicae (Chinese Version), 2014, 50(12): 24-31

[36]

Mishra V, Aadhar S, Mahto SS. Anthropogenic warming and intraseasonal summer monsoon variability amplify the risk of future flash droughts in India. NPJ Clim Atmos Sci, 2021, 4: 1

[37]

Monteith JL, Reifsnyder WE. Principles of environmental physics. Phys Today, 1974, 27(3): 51-52

[38]

Monteith JL, Unsworth M. Principles of Environmental Physics, 20074Amsterdam, The Netherlands, Academic Press

[39]

Nie XQ, Wang H, Wang J, Liu SR. Natural forests exhibit higher organic carbon concentrations and recalcitrant carbon proportions in soil than plantations: a global data synthesis. J for Res, 2024, 35(190

[40]

Niinemets Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. For Ecol Manag, 2010, 260(101623-1639

[41]

Niu XD, Liu SR. Drought affected ecosystem water use efficiency of a natural oak forest in Central China. Forests, 2021, 12(7): 839

[42]

Niu XD, Liu SR. Environmental and stomatal control on evapotranspiration in a natural oak forest. Ecohydrology, 2022, 15(4 e2423

[43]

Niu XD, Sun PS, Liu XJ, Luan JW, Liu SR. Net ecosystem carbon dioxide exchange in an oak (Quercus aliena) forest at transitional zone from subtropics to warm temperate. China Acta Ecol Sin, 2020, 40(175980-5991

[44]

Niu XD, Sun PS, Tao SR, Chen ZC, Niu BL, Liu SR. A dataset of carbon and water fluxes in a natural oak forest of Baotianman in Henan Province (2017–2018). China Sci Data, 2023, 8(4): 1-10

[45]

Njoroge B, Li YL, Otieno D, Liu SZ, Wei SM, Meng Z, Zhang QM, Zhang DQ, Liu JX, Chu GW, Haider FU, Tenhunen J. Seasonal droughts drive up carbon gain in a subtropical forest. J Plant Ecol, 2023, 16(1): 8rtac08

[46]

Noormets A, Desai AR, Cook BD, Euskirchen ES, Ricciuto DM, Davis KJ, Bolstad PV, Schmid HP, Vogel CV, Carey EV, Su HB, Chen J. Moisture sensitivity of ecosystem respiration: comparison of 14 forest ecosystems in the upper great lakes region, USA. Agric for Meteor, 2008, 148(2216-230

[47]

Noormets A, McNulty SG, DeForest JL, Sun G, Li QL, Chen JQ. Drought during canopy development has lasting effect on annual carbon balance in a deciduous temperate forest. New Phytol, 2008, 179(3): 818-828

[48]

Noormets A, Gavazzi MJ, McNulty SG, Domec JC, Sun G, King JS, Chen JQ. Response of carbon fluxes to drought in a coastal plain loblolly pine forest. Glob Change Biol, 2010, 16(1): 272-287

[49]

Novick KA, Ficklin DL, Stoy PC, Williams CA, Bohrer G, Oishi AC, Papuga SA, Blanken PD, Noormets A, Sulman BN, Scott RL, Wang LX, Phillips RP. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Clim Change, 2016, 6(11): 1023-1027

[50]

Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 2006, 3(4): 571-583

[51]

Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Dore S, Valentini R. Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and decomposition dynamics. Funct Ecol, 2002, 16(1): 27-39

[52]

Reichstein M, Tenhunen J, Roupsard O, Ourcival JM, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R. Inverse modeling of seasonal drought effects on canopy CO2/H2O exchange in three Mediterranean ecosystems. J Geophys Res Atmos, 2003, 108(D23): 4726

[53]

Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol, 2005, 11(91424-1439

[54]

Roman DT, Novick KA, Brzostek ER, Dragoni D, Rahman F, Phillips RP. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia, 2015, 179(3): 641-654

[55]

Saleska SR, Didan K, Huete AR, da Rocha HR. Amazon forests green-up during 2005 drought. Science, 2007, 318(5850): 612

[56]

Schwalm CR, Williams CA, Schaefer K, Arneth A, Bonal D, Buchmann N, Chen JQ, Law BE, Lindroth A, Luyssaert S, Reichstein M, Richardson AD. Assimilation exceeds respiration sensitivity to drought: a FLUXNET synthesis. Glob Change Biol, 2010, 16(2657-670

[57]

Society AM. Meteorological drought-policy statement. Bull Am Meteor Soc, 1997, 78: 847-849

[58]

Sun G, Alstad K, Chen JQ, Chen SP, Ford CR, Lin GH, Liu CF, Lu N, McNulty SG, Miao HX, Noormets A, Vose JM, Wilske B, Zeppel M, Zhang Y, Zhang ZQ. A general predictive model for estimating monthly ecosystem evapotranspiration. Ecohydrology, 2011, 4(2): 245-255

[59]

Sun G, Caldwell P, Noormets A, McNulty SG, Cohen E, Myers JM, Domec JC, Treasure E, Mu QZ, Xiao JF, John R, Chen JQ. Upscaling key ecosystem functions across the conterminous United States by a water-centric ecosystem model. J Geophys Res Biogeosci, 2011, 116(G3): G00J05

[60]

Tang YK, Wen XF, Sun XM, Zhang XY, Wang HM. The limiting effect of deep soil water on evapotranspiration of a subtropical coniferous plantation subjected to seasonal drought. Adv Atmos Sci, 2014, 31(2385-395

[61]

Thomas CK, Law BE, Irvine J, Martin JG, Pettijohn JC, Davis KJ. Seasonal hydrology explains interannual and seasonal variation in carbon and water exchange in a semiarid mature ponderosa pine forest in central Oregon. J Geophys Res Biogeosci, 2009, 114(G4): G04006

[62]

van der Molen MK, Dolman AJ, Ciais P, Eglin T, Gobron N, Law BE, Meir P, Peters W, Phillips OL, Reichstein M, Chen T, Dekker SC, Doubková M, Friedl MA, Jung M, van den Hurk BJJM, de Jeu RAM, Kruijt B, Ohta T, Rebel KT, Plummer S, Seneviratne SI, Sitch S, Teuling AJ, van der Werf GR, Wang G. Drought and ecosystem carbon cycling. Agric for Meteor, 2011, 151(7765-773

[63]

Wang TT. Effects of simulated precipitation change, and nitrogen deposition on soil microbial community structure in a forest in subtropical – warm temperate climate transition zone, 2020, Henan, Henan University (Chinese Version)12

[64]

Xie J, Chen JQ, Sun G, Zha TS, Yang B, Chu HS, Liu JG, Wan SQ, Zhou CX, Ma H, Bourque CP, Shao CL, John R, Ouyang Z. Ten-year variability in ecosystem water use efficiency in an oak-dominated temperate forest under a warming climate. Agric for Meteor, 2016, 218–219: 209-217

[65]

Xu XJ, Du HQ, Zhou GM, Li PH, Shi YJ, Zhou YF. Eddy covariance analysis of the implications of drought on the carbon fluxes of Moso bamboo forest in southeastern China. Trees, 2016, 30(5): 1807-1820

[66]

Xu B, Altaf Arain M, Andrew Black T, Law BE, Pastorello GZ, Chu HS. Seasonal variability of forest sensitivity to heat and drought stresses: a synthesis based on carbon fluxes from North American forest ecosystems. Glob Chang Biol, 2020, 26(2): 901-918

[67]

Xu Y, Li MW, Jia ZT, Gong YF, Li XR, Fu YH. Incorporating drought thresholds improves model predictions of autumn phenology in tropical and subtropical forests. Glob Chang Biol, 2025, 31(4 e70177

[68]

Yi K, Dragoni D, Phillips RP, Tyler Roman D, Novick KA. Dynamics of stem water uptake among isohydric and anisohydric species experiencing a severe drought. Tree Physiol, 2017, 37(10): 1379-1392

[69]

Yuan WP, Liu SG, Yu GR, Bonnefond JM, Chen JQ, Davis K, Desai AR, Goldstein AH, Gianelle D, Rossi F, Suyker AE, Verma SB. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens Environ, 2010, 114(7): 1416-1431

[70]

Zeng N, Qian HF, Roedenbeck C, Heimann M. Impact of 1998–2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle. Geophys Res Lett, 2005, 32(22): L22709

[71]

Zhang YJ, Yu GR, Yang J, Wimberly MC, Zhang XZ, Tao J, Jiang YB, Zhu JT. Climate-driven global changes in carbon use efficiency. Glob Ecol Biogeogr, 2014, 23(2144-155

[72]

Zhao HX, Zhou ZY, Zhang F, Bourque CP, Jia X, Li XH, Liu P, Yu HQ, Tian Y, Jin C, Hao SR, Zha TS. Sensitivity of gross primary production and evapotranspiration to heat and drought stress in a young temperate plantation in northern China. For Ecosyst, 2025, 12 100275

[73]

Zhou J, Zhang ZQ, Sun G, Fang XR, Zha TG, McNulty S, Chen JQ, Jin Y, Noormets A. Response of ecosystem carbon fluxes to drought events in a poplar plantation in Northern China. For Ecol Manag, 2013, 300: 33-42

[74]

Zhu WT, Xie FL, Li T, He NJ, Zhang KR, Zhang QF, Dang HS. Species-habitat association of a deciduous broadleaved forest in the subtropical and Tempe-rate transition zone. J Appl Ecol, 2021, 32(8): 2755-2762

[75]

Zhu Z, Sun XM, Wen XF, Zhou YL, Tian J, Yuan GF (2006) Study on night CO2 vorticity correlation flux data processing method of China Flux Network (ChinaFLUX). Science in China (Chinese Version) Series D: Earth Sciences S1: 34–44.

RIGHTS & PERMISSIONS

Northeast Forestry University

PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

/