Prediction of sap flux of elm (Ulmus pumila var. sabulosa) by solar induced fluorescence in a temperate savanna, China

Weiwei Cong , Kaijie Yang , Sen Lu , Tianhong Zhao , Feng Wang , Qi Lu

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 89

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) :89 DOI: 10.1007/s11676-025-01890-3
Original Paper
research-article

Prediction of sap flux of elm (Ulmus pumila var. sabulosa) by solar induced fluorescence in a temperate savanna, China

Author information +
History +
PDF

Abstract

Tracking the sap flux of woody plants in savannas is essential for understanding their response to climate change and human management. Solar-induced fluorescence (SIF) has potential to predict transpiration yet its applicability for estimating savanna sap flux is unclear. Using three years of tower-based far-red SIF observations and ground-based sap flow monitoring in a temperate savanna of Otindag Sandy Land, China, we investigated the relationship between far-red SIF and sap flux density and developed linear and random forest models for estimating. The results show a variable correlation between SIF and sap flux density for Ulmus pumila var. sabulosa (J.H. Xin) G.H. Zhu & D.H. Bian (U. pumila.) at an hourly scale. The strongest correlations were during the mid- growth period July and August when considering the time lag between SIF and sap flux (0–0.5 h). Photosynthetically active radiation was the primary factor driving the SIF and sap flux density relationship. Soil moisture, vapor pressure deficit, and air temperature also influenced this relationship on daily and monthly scales. Compared to SIF-based linear regression models, the SIF-based random forest model performed better in tracking the seasonal sap flux density. The results suggest the feasibility of accurately monitoring vegetation sap flux using SIF, woody fractional vegetation cover, and environmental factors in a temperate savanna. This method could also be used in modeling land surface processes in savanna-type ecosystems.

Graphic abstract

Keywords

Temperate savanna / Ulmus pumila. / Far-red SIF / Sap flux relationships / Environmental factors

Cite this article

Download citation ▾
Weiwei Cong, Kaijie Yang, Sen Lu, Tianhong Zhao, Feng Wang, Qi Lu. Prediction of sap flux of elm (Ulmus pumila var. sabulosa) by solar induced fluorescence in a temperate savanna, China. Journal of Forestry Research, 2025, 36(1): 89 DOI:10.1007/s11676-025-01890-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barron-Gafford GA, Sanchez-Cañete EP, Minor RL, Hendryx SM, Lee E, Sutter LF, Tran N, Parra E, Colella T, Murphy PC, Hamerlynck EP, Kumar P, Scott RL. Impacts of hydraulic redistribution on grass–tree competition vs facilitation in a semi-arid savanna. New Phytol, 2017, 215(4): 1451-1461

[2]

Bowling DR, Logan BA, Hufkens K, Aubrecht DM, Richardson AD, Burns SP, Anderegg WRL, Blanken PD, Eiriksson DP. Limitations to winter and spring photosynthesis of a Rocky Mountain subalpine forest. Agric For Meteor, 2018, 252: 241-255

[3]

Brilli F, Hörtnagl L, Hammerle A, Haslwanter A, Hansel A, Loreto F, Wohlfahrt G. Leaf and ecosystem response to soil water availability in mountain grasslands. Agric For Meteorol, 2011, 151(12): 1731-1740

[4]

Brinkmann N, Eugster W, Zweifel R, Buchmann N, Kahmen A. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. Tree Physiol, 2016, 36(12): 1508-1519

[5]

Bu JY, Gan GJ, Chen JH, Su YX, Yuan MJ, Gao YC, Domingo F, López-Ballesteros A, Migliavacca M, El-Madany TS, Gentine P, Xiao JF, Garcia M. Dryland evapotranspiration from remote sensing solar-induced chlorophyll fluorescence: constraining an optimal stomatal model within a two-source energy balance model. Remote Sens Environ, 2024, 303 113999

[6]

Burchard-Levine V, Nieto H, Riaño D, Kustas WP, Migliavacca M, El-Madany TS, Nelson JA, Andreu A, Carrara A, Beringer J, Baldocchi D, Pilar Martín M. A remote sensing-based three-source energy balance model to improve global estimations of evapotranspiration in semi-arid tree-grass ecosystems. Glob Chang Biol, 2022, 28(4): 1493-1515

[7]

Bush SE, Pataki DE, Hultine KR, West AG, Sperry JS, Ehleringer JR. Wood anatomy constrains stomatal responses to atmospheric vapor pressure deficit in irrigated, urban trees. Oecologia, 2008, 156(1): 13-20

[8]

Chang XX, Zhao WZ, He ZB. Radial pattern of sap flow and response to microclimate and soil moisture in Qinghai spruce (Picea crassifolia) in the upper Heihe River Basin of arid northwestern China. Agric For Meteor, 2014, 187: 14-21

[9]

Chang CY, Guanter L, Frankenberg C, Köhler P, Gu LH, Magney TS, Grossmann K, Sun Y. Systematic assessment of retrieval methods for canopy far-red solar-induced chlorophyll fluorescence using high-frequency automated field spectroscopy. J Geophys Res Biogeosci, 2020, 125(7): e2019JG005533

[10]

Chen Z, Zhang ZQ, Sun G, Chen LX, Xu H, Chen SN. Biophysical controls on nocturnal sap flow in plantation forests in a semi-arid region of northern China. Agric For Meteor, 2020, 284 107904

[11]

Cong WW, Yang KJ, Wang F. Canopy solar-induced chlorophyll fluorescence and its link to transpiration in a temperate evergreen needle leaf forest during the fall transition. Forests, 2022, 13(174

[12]

Damm A, Haghighi E, Paul-Limoges E, van der Tol C. On the seasonal relation of Sun-induced chlorophyll fluorescence and transpiration in a temperate mixed forest. Agric For Meteor, 2021, 304 108386

[13]

Dawson TE, Burgess SSO, Tu KP, Oliveira RS, Santiago LS, Fisher JB, Simonin KA, Ambrose AR. Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiol, 2007, 27(4561-575

[14]

Di N, Xi BY, Clothier B, Wang Y, Li GD, Jia LM. Diurnal and nocturnal transpiration behaviors and their responses to groundwater-table fluctuations and meteorological factors of Populus tomentosa in the North China Plain. For Ecol Manag, 2019, 448: 445-456

[15]

Dietrich L, Delzon S, Hoch G, Kahmen A. No role for xylem embolism or carbohydrate shortage in temperate trees during the severe 2015 drought. J Ecol, 2019, 107(1): 334-349

[16]

Dobson A, Hopcraft G, Mduma S, Ogutu JO, Fryxell J, Michael Anderson T, Archibald S, Lehmann C, Poole J, Caro T, Mulder MB, Holt RD, Berger J, Rubenstein DI, Kahumbu P, Chidumayo EN, Milner-Gulland EJ, Schluter D, Otto S, Balmford A, Wilcove D, Pimm S, Veldman JW, Olff H, Noss R, Holdo R, Beale C, Hempson G, Kiwango Y, Lindenmayer D, Bond W, Ritchie M, Sinclair ARE. Savannas are vital but overlooked carbon sinks. Science, 2022, 375(6579): 392

[17]

Du S, Wang YL, Kume T, Zhang JG, Otsuki K, Yamanaka N, Liu GB. Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China. Agric For Meteor, 2011, 151(11-10

[18]

Du SS, Liu LY, Liu XJ, Hu JC. Response of canopy solar-induced chlorophyll fluorescence to the absorbed photosynthetically active radiation absorbed by chlorophyll. Remote Sens, 2017, 9(9): 911

[19]

Duveiller G, Cescatti A. Spatially downscaling Sun-induced chlorophyll fluorescence leads to an improved temporal correlation with gross primary productivity. Remote Sens Environ, 2016, 182: 72-89

[20]

El-Madany TS, Reichstein M, Perez-Priego O, Carrara A, Moreno G, Pilar Martín M, Pacheco-Labrador J, Wohlfahrt G, Nieto H, Weber U, Kolle O, Luo YP, Carvalhais N, Migliavacca M. Drivers of spatio-temporal variability of carbon dioxide and energy fluxes in a Mediterranean savanna ecosystem. Agric For Meteor, 2018, 262: 258-278

[21]

Ershadi A, McCabe MF, Evans JP, Chaney NW, Wood EF. Multi-site evaluation of terrestrial evaporation models using FLUXNET data. Agric For Meteor, 2014, 187: 46-61

[22]

Feng X, Ackerly DD, Dawson TE, Manzoni S, McLaughlin B, Skelton RP, Vico G, Weitz AP, Thompson SE. Beyond isohydricity: The role of environmental variability in determining plant drought responses. Plant Cell Environ, 2019, 42(41104-1111

[23]

Feng HZ, Xu TR, Liu LY, Zhou S, Zhao JX, Liu SM, Xu ZW, Mao KB, He XL, Zhu ZL, Chai LN. Modeling transpiration with Sun-induced chlorophyll fluorescence observations via carbon-water coupling methods. Remote Sens, 2021, 13(4): 804

[24]

Fricke W. Night-time transpiration–favouring growth?. Trends Plant Sci, 2019, 24(4311-317

[25]

Gan GJ, Kang TT, Yang S, Bu JY, Feng ZM, Gao YC. An optimized two source energy balance model based on complementary concept and canopy conductance. Remote Sens Environ, 2019, 223: 243-256

[26]

Garcia-Forner N, Adams HD, Sevanto S, Collins AD, Dickman LT, Hudson PJ, Zeppel MJB, Jenkins MW, Powers H, Martínez-Vilalta J, McDowell NG. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation. Plant Cell Environ, 2016, 39(1): 38-49

[27]

Gentine P, Alemohammad SH. Reconstructed solar-induced fluorescence: a machine learning vegetation product based on MODIS surface reflectance to reproduce GOME-2 solar-induced fluorescence. Geophys Res Lett, 2018, 45(7): 3136-3146

[28]

Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol, 1987, 3(4): 309-320

[29]

Granier A, Anfodillo T, Sabatti M, Cochard H, Dreyer E, Tomasi M, Valentini R, Bréda N. Axial and radial water flow in the trunks of oak trees: a quantitative and qualitative analysis. Tree Physiol, 1994, 14(12): 1383-1396

[30]

Granier A, Biron P, Bréda N, Pontailler JY, Saugier B. Transpiration of trees and forest stands: short and long-term monitoring using sapflow methods. Glob Change Biol, 1996, 2(3): 265-274

[31]

Gu LH, Han JM, Wood JD, Chang CY, Sun Y. Sun-induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. New Phytol, 2019, 223(3): 1179-1191

[32]

Gu LH, Grodzinski B, Han JM, Marie T, Zhang YJ, Song YC, Sun Y. An exploratory steady-state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications. Plant Cell Environ, 2023, 46(5): 1540-1561

[33]

Hacke UG, Sperry JS, Wheeler JK, Castro L. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol, 2006, 26(6): 689-701

[34]

Hölttä T, Dominguez Carrasco MDR, Salmon Y, Aalto J, Vanhatalo A, Bäck J, Lintunen A. Water relations in silver birch during springtime: How is sap pressurised?. Plant Biol, 2018, 20(5): 834-847

[35]

Jasechko S, Sharp ZD, Gibson JJ, Jean Birks S, Yi Y, Fawcett PJ. Terrestrial water fluxes dominated by transpiration. Nature, 2013, 496(7445): 347-350

[36]

Jonard F, De Cannière S, Brüggemann N, Gentine P, Short Gianotti DJ, Lobet G, Miralles DG, Montzka C, Pagán BR, Rascher U, Vereecken H. Value of Sun-induced chlorophyll fluorescence for quantifying hydrological states and fluxes: current status and challenges. Agric For Meteor, 2020, 291 108088

[37]

Joshi J, Stocker BD, Hofhansl F, Zhou SX, Dieckmann U, Prentice IC. Towards a unified theory of plant photosynthesis and hydraulics. Nat Plants, 2022, 8(11): 1304-1316

[38]

Khan MF, Sulaiman M, Alshammari FS. A hybrid heuristic-driven technique to study the dynamics of savanna ecosystem. Stoch Environ Res Risk Assess, 2023, 37(1): 1-25

[39]

Kim D, Oren R, Oishi AC, Hsieh CI, Phillips N, Novick KA, Stoy PC. Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest. Agric For Meteor, 2014, 187: 62-71

[40]

Konings AG, Gentine P. Global variations in ecosystem-scale isohydricity. Glob Chang Biol, 2017, 23(2): 891-905

[41]

Köstner B, Granier A, Cermák J. Sapflow measurements in forest stands: methods and uncertainties. Ann for Sci, 1998, 55(1–2): 13-27

[42]

Leuning R, Dunin FX, Wang YP. A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy. II. Comparison with measurements. Agric For Meteor, 1998, 91(12): 113-125

[43]

Li X, Xiao JF. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens, 2019, 11(5): 517

[44]

Li YG, Jiang GM, Liu MZ, Niu SL, Gao LM, Cao XC. Photosynthetic response to precipitation/rainfall in predominant tree (Ulmus pumila) seedlings in Hunshandak Sandland. China Photosynthetica, 2007, 45(1133-138

[45]

Lian X, Piao SL, Huntingford C, Li Y, Zeng ZZ, Wang XH, Ciais P, McVicar TR, Peng SS, Ottlé C, Yang H, Yang YT, Zhang YQ, Wang T. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat Clim Change, 2018, 8(7): 640-646

[46]

Liu YJ, Zhang YG, Shan N, Zhang ZY, Wei ZW. Global assessment of partitioning transpiration from evapotranspiration based on satellite solar-induced chlorophyll fluorescence data. J Hydrol, 2022, 612 128044

[47]

Lou JP, Wang XM, Cai DW. Spatial and temporal variation of wind erosion climatic erosivity and its response to ENSO in the otindag desert. China Atmosphere, 2019, 10(10): 614

[48]

Lu P, Müller WJ, Chacko EK. Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions. Tree Physiol, 2000, 20(10683-692

[49]

Lu P, Urban L, Ping Z. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. Acta Bot Sin, 2004, 46(6): 631-646

[50]

Lu XL, Liu ZQ, An SQ, Miralles DG, Maes W, Liu YL, Tang JW. Potential of solar-induced chlorophyll fluorescence to estimate transpiration in a temperate forest. Agric For Meteor, 2018, 252: 75-87

[51]

Ma CK, Luo Y, Shao MG, Li XD, Sun L, Jia XX. Environmental controls on sap flow in black locust forest in Loess Plateau. China Sci Rep, 2017, 7(1): 13160

[52]

Maes WH, Pagán BR, Martens B, Gentine P, Guanter L, Steppe K, Verhoest NEC, Dorigo W, Li X, Xiao JF, Miralles DG. Sun-induced fluorescence closely linked to ecosystem transpiration as evidenced by satellite data and radiative transfer models. Remote Sens Environ, 2020, 249 112030

[53]

Martini D, Sakowska K, Wohlfahrt G, Pacheco-Labrador J, van der Tol C, Porcar-Castell A, Magney TS, Carrara A, Colombo R, El-Madany TS, Gonzalez-Cascon R, Martín MP, Julitta T, Moreno G, Rascher U, Reichstein M, Rossini M, Migliavacca M. Heatwave breaks down the linearity between Sun-induced fluorescence and gross primary production. New Phytol, 2022, 233(62415-2428

[54]

McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. New Phytol, 2008, 178(4): 719-739

[55]

Miao GF, Guan KY, Suyker AE, Yang X, Arkebauer TJ, Walter-Shea EA, Kimm H, Hmimina GY, Gamon JA, Franz TE, Frankenberg C, Berry JA, Wu GH. Varying contributions of drivers to the relationship between canopy photosynthesis and far-red Sun-induced fluorescence for two maize sites at different temporal scales. J Geophys Res Biogeosci, 2020, 125(2): e2019JG005051

[56]

Mohammed GH, Colombo R, Middleton EM, Rascher U, van der Tol C, Nedbal L, Goulas Y, Pérez-Priego O, Damm A, Meroni M, Joiner J, Cogliati S, Verhoef W, Malenovský Z, Gastellu-Etchegorry JP, Miller JR, Guanter L, Moreno J, Moya I, Berry JA, Frankenberg C, Zarco-Tejada PJ. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens Environ, 2019, 231 111177

[57]

Monson RK, Sparks JP, Rosenstiel TN, Scott-Denton LE, Huxman TE, Harley PC, Turnipseed AA, Burns SP, Backlund B, Hu J. Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia, 2005, 146(1130-147

[58]

Myneni RB, Williams DL. On the relationship between FAPAR and NDVI. Remote Sens Environ, 1994, 49(3): 200-211

[59]

Novick KA, Miniat CF, Vose JM. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory. Plant Cell Environ, 2016, 39(3): 583-596

[60]

Pagán B, Maes W, Gentine P, Martens B, Miralles D. Exploring the potential of satellite solar-induced fluorescence to constrain global transpiration estimates. Remote Sens, 2019, 11(4): 413

[61]

Phillips N, Oren R, Zimmermann R, Wright SJ. Temporal patterns of water flux in trees and lianas in a Panamanian moist forest. Trees, 1999, 14(3116-123

[62]

Porcar-Castell A, Tyystjärvi E, Atherton J, van der Tol C, Flexas J, Pfündel EE, Moreno J, Frankenberg C, Berry JA. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J Exp Bot, 2014, 65(15): 4065-4095

[63]

Poyatos R, Granda V, Molowny-Horas R, Mencuccini M, Steppe K, Martínez-Vilalta J. SAPFLUXNET: towards a global database of sap flow measurements. Tree Physiol, 2016, 36(12): 1449-1455

[64]

Shan N, Ju WM, Migliavacca M, Martini D, Guanter L, Chen JM, Goulas Y, Zhang YG. Modeling canopy conductance and transpiration from solar-induced chlorophyll fluorescence. Agric For Meteor, 2019, 268: 189-201

[65]

Shan N, Zhang YG, Chen JM, Ju WM, Migliavacca M, Peñuelas J, Yang X, Zhang ZY, Nelson JA, Goulas Y. A model for estimating transpiration from remotely sensed solar-induced chlorophyll fluorescence. Remote Sens Environ, 2021, 252 112134

[66]

Shen Q, Gao GY, Fu BJ, YH. Sap flow and water use sources of shelter-belt trees in an arid inland river basin of Northwest China. Ecohydrology, 2015, 8(8): 1446-1458

[67]

Smith WK, Dannenberg MP, Yan D, Herrmann S, Barnes ML, Barron-Gafford GA, Biederman JA, Ferrenberg S, Fox AM, Hudson A, Knowles JF, MacBean N, Moore DJP, Nagler PL, Reed SC, Rutherford WA, Scott RL, Wang X, Yang JL. Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sens Environ, 2019, 233 111401

[68]

Song LN, Zhu JJ, Zheng X, Li X, Wang K, Zhang JX, Wang GC, Sun HH. Water use dynamics of trees in a Pinus tabuliformis plantation in semiarid sandy regions. NorthEast China Agric Water Manag, 2023, 275 107995

[69]

Springer K, Wang R, Gamon J. Parallel seasonal patterns of photosynthesis, fluorescence, and reflectance indices in boreal trees. Remote Sens, 2017, 9(7): 691

[70]

Stoy PC, El-Madany TS, Fisher JB, Gentine P, Gerken T, Good SP, Klosterhalfen A, Liu SG, Miralles DG, Perez-Priego O, Rigden AJ, Skaggs TH, Wohlfahrt G, Anderson RG, Coenders-Gerrits AMJ, Jung M, Maes WH, Mammarella I, Mauder M, Migliavacca M, Nelson JA, Poyatos R, Reichstein M, Scott RL, Wolf S. Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences, 2019, 16(193747-3775

[71]

Sun Y, Gu LH, Wen JM, van der Tol C, Porcar-Castell A, Joiner J, Chang CY, Magney T, Wang LX, Hu LQ, Rascher U, Zarco-Tejada P, Barrett CB, Lai JM, Han JM, Luo ZQ. From remotely sensed solar-induced chlorophyll fluorescence to ecosystem structure, function, and service: Part I—Harnessing theory. Glob Change Biol, 2023, 29(11): 2926-2952

[72]

Taneda H, Sperry JS. A case-study of water transport in co-occurring ring- versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refilling. Tree Physiol, 2008, 28(11): 1641-1651

[73]

Tie Q, Hu HC, Tian FQ, Guan HD, Lin H. Environmental and physiological controls on sap flow in a subhumid mountainous catchment in North China. Agric For Meteor, 2017, 240: 46-57

[74]

Tobin RL, Kulmatiski A. Plant identity and shallow soil moisture are primary drivers of stomatal conductance in the savannas of Kruger National Park. PLoS ONE, 2018, 13(1 e0191396

[75]

Viña A, Gitelson AA. New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops. Geophys Res Lett, 2005, 32(17): L17403

[76]

Walther S, Voigt M, Thum T, Gonsamo A, Zhang YG, Köhler P, Jung M, Varlagin A, Guanter L. Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Glob Chang Biol, 2016, 22(92979-2996

[77]

Wang YP, Leuning R. A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: Model description and comparison with a multi-layered model. Agric For Meteor, 1998, 91(1–2): 89-111

[78]

Wang HZ, Han D, Mu Y, Jiang LN, Yao XL, Bai YF, Lu Q, Wang F. Landscape-level vegetation classification and fractional woody and herbaceous vegetation cover estimation over the dryland ecosystems by unmanned aerial vehicle platform. Agric For Meteor, 2019, 278 107665

[79]

Wei ZW, Yoshimura K, Wang LX, Miralles DG, Jasechko S, Lee XH. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys Res Lett, 2017, 44(6): 2792-2801

[80]

Wen J, Köhler P, Duveiller G, Parazoo NC, Magney TS, Hooker G, Yu L, Chang CY, Sun Y. A framework for harmonizing multiple satellite instruments to generate a long-term global high spatial-resolution solar-induced chlorophyll fluorescence (SIF). Remote Sens Environ, 2020, 239 111644

[81]

Whitley R, Beringer J, Hutley LB, Abramowitz G, De Kauwe MG, Evans B, Haverd V, Li LH, Moore C, Ryu Y, Scheiter S, Schymanski SJ, Smith B, Wang Y-P, Williams M, Yu Q. Challenges and opportunities in land surface modelling of savanna ecosystems. Biogeosciences, 2017, 14(20): 4711-4732

[82]

Wu GH, Guan KY, Li Y, Novick KA, Feng X, McDowell NG, Konings AG, Thompson SE, Kimball JS, De Kauwe MG, Ainsworth EA, Jiang CY. Interannual variability of ecosystem Iso/anisohydry is regulated by environmental dryness. New Phytol, 2021, 229(5): 2562-2575

[83]

Xing WQ, Wang WG, Shao QX, Song LY, Cao MZ. Estimation of evapotranspiration and its components across China based on a modified Priestley-Taylor algorithm using monthly multi-layer soil moisture data. Remote Sens, 2021, 13(16): 3118

[84]

Yang X, Tang JW, Mustard JF, Lee JE, Rossini M, Joiner J, Munger JW, Kornfeld A, Richardson AD. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys Res Lett, 2015, 42(82977-2987

[85]

Yang X, Shi HY, Stovall A, Guan KY, Miao GF, Zhang YG, Zhang Y, Xiao XM, Ryu Y, Lee JE. FluoSpec 2-an automated field spectroscopy system to monitor canopy solar-induced fluorescence. Sensors, 2018, 18(7): 2063

[86]

Yang PQ, van der Tol C, Campbell PKE, Middleton EM. Fluorescence correction vegetation index (FCVI): a physically based reflectance index to separate physiological and non-physiological information in far-red Sun-induced chlorophyll fluorescence. Remote Sens Environ, 2020, 240 111676

[87]

Yang JJ, Liu ZQ, Yu Q, Lu XL. Estimation of global transpiration from remotely sensed solar-induced chlorophyll fluorescence. Remote Sens Environ, 2024, 303 113998

[88]

Yu L, Wen J, Chang CY, Frankenberg C, Sun Y. High-resolution global contiguous SIF of OCO-2. Geophys Res Lett, 2019, 46(31449-1458

[89]

Zarco-Tejada PJ, González-Dugo V, Berni JAJ. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens Environ, 2012, 117: 322-337

[90]

Zeng YL, Badgley G, Dechant B, Ryu Y, Chen M, Berry JA. A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence. Remote Sens Environ, 2019, 232 111209

[91]

Zeppel MJB, Murray BR, Barton C, Eamus D. Seasonal responses of xylem sap velocity to VPD and solar radiation during drought in a stand of native trees in temperate Australia. Funct Plant Biol, 2004, 31(5): 461-470

[92]

Zhang K, Kimball JS, Running SW. A review of remote sensing based actual evapotranspiration estimation. Wiley Interdiscip Rev Water, 2016, 3(6): 834-853

[93]

Zhang Y, Joiner J, Alemohammad SH, Zhou S, Gentine P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences, 2018, 15(19): 5779-5800

[94]

Zheng CL, Wang Q. Water-use response to climate factors at whole tree and branch scale for a dominant desert species in central Asia: Haloxylon ammodendron. Ecohydrology, 2014, 7(1): 56-63

[95]

Zheng C, Wang SQ, Chen JM, Xiao JF, Chen JH, Zhu K, Sun LG. Modeling transpiration using solar-induced chlorophyll fluorescence and photochemical reflectance index synergistically in a closed-canopy winter wheat ecosystem. Remote Sens Environ, 2024, 302 113981

[96]

Zhou K, Zhang Q, Xiong LH, Gentine P. Estimating evapotranspiration using remotely sensed solar-induced fluorescence measurements. Agric For Meteor, 2022, 314 108800

RIGHTS & PERMISSIONS

Northeast Forestry University

PDF

385

Accesses

0

Citation

Detail

Sections
Recommended

/