The effect of forest microenvironment on litter decomposition in the Andean tropical mountains

Dennis Castillo-Figueroa

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 102

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) :102 DOI: 10.1007/s11676-025-01887-y
Original Paper
research-article

The effect of forest microenvironment on litter decomposition in the Andean tropical mountains

Author information +
History +
PDF

Abstract

Upper Andean tropical forests are renowned for their extraordinary biodiversity and heterogeneous environmental conditions. Despite the critical role of litter decomposition in carbon and nutrient cycles, its dynamics in this region remains unexplored at finer scales. This study investigates how microsite conditions influence litter decomposition of 15 upper Andean species over time. A reciprocal translocation field experiment was conducted over 18 months in 14 permanent plots within four sites in Colombian Andean mountain forests. Each plot contained three litterbeds (microsites), each with the 15 species, harvested at 3, 6, 12 and 18 months, totaling 2520 litterbags. Different forest variables, including canopy openness, leaf area index, slope and depth of litter, were measured in each litterbed. ANOVAs and linear mixed models were used to assess variation between sites and plots respectively, while multiple linear regression analyses evaluated the effects of forest variables on decay rates over time at the microsite scale. Results showed differences in absolute decay rates between sites but consistent relative decay rates, indicating varying magnitudes of decomposition, yet maintaining the same order based on their litter quality. Decay rates varied between species, with more variation in labile species compared to recalcitrant ones. Despite substantial variation in forest characteristics within sites, their influence on litter decomposition was minimal and declined over time. This suggests that, at finer spatial scales, the forest microenvironment plays a lesser role in litter decomposition, with litter quality emerging as the primary driver. This study is a step towards understanding the fine-scale dynamics of litter decomposition in upper Andean tropical forests, highlighting the intricate interplay between microenvironmental factors and decomposition processes.

Keywords

Decomposition / Tropical montane forests / Forest structure / Microenvironmental conditions / Microsite scale

Cite this article

Download citation ▾
Dennis Castillo-Figueroa. The effect of forest microenvironment on litter decomposition in the Andean tropical mountains. Journal of Forestry Research, 2025, 36(1): 102 DOI:10.1007/s11676-025-01887-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 1997, 79(3): 439

[2]

Antonio-Fragala F, Obregón-Neira N. Recharge estimation in aquifers of the bogota savannah. Ingenieria Y Univ, 2011, 15: 145-169

[3]

Armstrong RA, Hilton AC. Armstrong RA, Hilton AC. Stepwise Multiple Regression. Statistical analysis in microbiology: Statnotes, 2010, Hoboken, Wiley135-138

[4]

Austin AT, Ballaré CL. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proc Natl Acad Sci USA, 2010, 107(10): 4618-4622

[5]

Austin AT, Vivanco L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature, 2006, 442(7102): 555-558

[6]

Austin AT, Soledad Méndez M, Ballaré CL. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proc Natl Acad Sci USA, 2016, 113(16): 4392-4397

[7]

Bakker MA, Carreño-Rocabado G, Poorter L. Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Funct Ecol, 2011, 25(3): 473-483

[8]

Barczyk MK, Acosta-Rojas DC, Espinosa CI, Schleuning M, Neuschulz EL. Biotic pressures and environmental heterogeneity shape beta-diversity of seedling communities in tropical montane forests. Ecography, 2023, 2023(6): e506538

[9]

Barczyk MK, Acosta-Rojas DC, Espinosa CI, Homeier J, Tinoco BA, Velescu A, Wilcke W, Schleuning M. Neuschulz EL (2024) Environmental conditions differently shape leaf, seed and seedling trait composition between and within elevations of tropical montane forests. Oikos, 2024, 11 e10421

[10]

Bélanger N, Collin A, Ricard-Piché J, Kembel SW, Rivest D. Microsite conditions influence leaf litter decomposition in sugar maple bioclimatic domain of Quebec. Biogeochemistry, 2019, 145(1107-126

[11]

Berg B, Lönn M. Long-term effects of climate and litter chemistry on rates and stable fractions of decomposing Scots pine and Norway spruce needle litter—a synthesis. Forests, 2022, 13(1): 125

[12]

Berg B, McClaugherty C. Plant litter: decomposition, humus formation, carbon sequestration. Springer, Berlin Heidelberg,, 2014

[13]

Berg B, Lönn M, Ni XY, Sun T, Dong LL, Gaitnieks T, Virzo De Santo A, Johansson MB. Decomposition rates in late stages of Scots pine and Norway spruce needle litter: Influence of nutrients and substrate properties over a climate gradient. For Ecol Manag, 2022, 522 120452

[14]

Bradford MA, Warren RJII, Baldrian P, Crowther TW, Maynard DS, Oldfield EE, Wieder WR, Wood SA, King JR. Climate fails to predict wood decomposition at regional scales. Nat Clim Change, 2014, 4: 625-630

[15]

Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA. Understanding the dominant controls on litter decomposition. J Ecol, 2016, 104(1229-238

[16]

Bradford MA, Ciska Veen GF, Bonis A, Bradford EM, Classen AT, Cornelissen HC, J, Crowther TW, De Long JR, Freschet GT, Kardol P, Manrubia-Freixa M, Maynard DS, Newman GS, Logtestijn RSP, Viketoft M, Wardle DA, Wieder WR, Wood SA, van der Putten WH, . A test of the hierarchical model of litter decomposition. Nat Ecol Evol., 2017, 1(12): 1836-1845

[17]

Bruhwiler L, Michalak AM, Birdsey R, Fisher JB, Houghton RA, Huntzinger DN, Miller JB. Cavallaro N, Shrestha G, Birdsey R, Mayes MA, Najjar RG, Reed SC, Romero-Lankao P, Zhu Z. Overview of the global carbon cycle. Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report, 2018, Washington, US Global Change Research Program4270

[18]

Calbi M, Clerici N, Borsch T, Brokamp G. Reconstructing long term high Andean forest dynamics using historical aerial imagery: a case study in Colombia. Forests, 2020, 11(8): 788

[19]

Calbi M, Fajardo-Gutiérrez F, Posada JM, Lücking R, Brokamp G, Borsch T. Seeing the wood despite the trees: exploring human disturbance impact on plant diversity, community structure, and standing biomass in fragmented high Andean forests. Ecol Evol, 2021, 11(52110-2172

[20]

Canessa R, van den Brink L, Berdugo MB, Hättenschwiler S, Rios RS, Saldaña A, Tielbörger K, Bader MY. Trait functional diversity explains mixture effects on litter decomposition at the arid end of a climate gradient. J Ecol, 2022, 110(9): 2219-2231

[21]

Cárdenas RE, Donoso DA, Argoti A, Dangles O. Functional consequences of realistic extinction scenarios in Amazonian soil food webs. Ecosphere, 2017, 8(2 e01692

[22]

Castillo-Avila C, Castillo-Figueroa D, Posada JM. Drivers of soil fauna communities along a successional gradient in upper Andean tropical forests. Soil Biol Biochem, 2025, 202 109692

[23]

Castillo-Figueroa D. Carbon cycle in tropical upland ecosystems: a global review. Web Ecol, 2021, 21(2): 109-136

[24]

Castillo-Figueroa D. Litter mixture effects on decomposition change with forest succession and are influenced by time and soil fauna in tropical mountain Andes. Folia Oecol, 2024, 51(1): 1-107

[25]

Castillo-Figueroa D. No home-field advantage in upper Andean tropical forests despite strong differences in site environmental characteristics. Iforest, 2024, 17(5): 286-294

[26]

Castillo-Figueroa D, Castillo-Avila C. Little influence of soil fauna on decomposition in successional upper Andean tropical forests. Soil Ecol Lett, 2025, 7(2 240277

[27]

Castillo-Figueroa D, González-Melo A, Posada JM. Wood density is related to aboveground biomass and productivity along a successional gradient in upper Andean tropical forests. Front Plant Sci, 2023, 14: 1276424

[28]

Castillo-Figueroa D, Soler-Marín D, Posada JM. Functional traits and species identity drive decomposition along a successional gradient in upper Andean tropical forests. Biotropica, 2025, 57(1 e13425

[29]

Castillo-Figueroa D, Posada JM (2025) The role of litterfall in understanding the ecological integrity of endangered upper Andean successional forests. In: Conservation of Andean forests. Springer Nature Switzerland, pp 59–76. https://doi.org/10.1007/978-3-031-80805-0_3

[30]

Cedillo H, García-Montero LG, Toledo S, Mosquera P, Benalcázar P, Zea P, Jadán O. Influencia del clima sobre la composición, la diversidad, la biomasa y los rasgos funcionales de la vegetación arbórea de dos bosques tropicales montanos andinos. Ecol Austral, 2023, 33(3): 716-729

[31]

Chattamvelli R, Shanmugam R. Descriptive Statistics for Scientists and Engineers, 2023, Switzerland, Springer130

[32]

Chatterjee S, Hadi AS (2006) Regression analysis by example: Chatterjee/regression. John Wiley & Sons, Inc., New York https://doi.org/10.1002/0470055464

[33]

Chatterjee S, Simonoff JS. Handbook of regression analysis, 2013, New York, Wiley236

[34]

Chen JJ, Zhu J, Wang ZW, Xing C, Chen B, Wang XL, Wei CS, Liu JF, He ZS, Xu DW. Canopy gaps control litter decomposition and nutrient release in subtropical forests. Forests, 2023, 14(4673

[35]

Chiba A, Uchida Y, Kublik S, Vestergaard G, Buegger F, Schloter M, Schulz S. Soil bacterial diversity is positively correlated with decomposition rates during early phases of maize litter decomposition. Microorganisms, 2021, 9(2357

[36]

Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Victoria Vaieretti M, Westoby M. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett, 2008, 11(101065-1071

[37]

Coûteaux MM, Bottner P, Berg B. Litter decomposition, climate and liter quality. Trends Ecol Evol, 1995, 10(2): 63-66

[38]

de la Riva EG, Prieto I, Villar R. The leaf economic spectrum drives leaf litter decomposition in Mediterranean forests. Plant Soil, 2019, 435(1): 353-366

[39]

Djukic I, Kepfer-Rojas S, Schmidt IK, Larsen KS, Beier C, Berg B, Verheyen K. Early stage litter decomposition across biomes. Sci Total Environ, 2018, 628–629: 1369-1394

[40]

Duque A, Peña MA, Cuesta F, González-Caro S, Kennedy P, Phillips OL, Calderón-Loor M, Blundo C, Carilla J, Cayola L, Farfán-Ríos W, Fuentes A, Grau R, Homeier J, Loza-Rivera MI, Malhi Y, Malizia A, Malizia L, Martínez-Villa JA, Myers JA, Osinaga-Acosta O, Peralvo M, Pinto E, Saatchi S, Silman M, Sebastián Tello J, Terán-Valdez A, Feeley KJ. Mature Andean forests as globally important carbon sinks and future carbon refuges. Nat Commun, 2021, 12(1): 2138

[41]

Esquivel J, Park BB, Casanoves F, Delgado D, Park GE, Finegan B. Altitude and species identity drive leaf litter decomposition rates of ten species on a 2950 m altitudinal gradient in Neotropical rain forests. Biotropica, 2020, 52(111-21

[42]

Etter A, Andrade Á, Zúñiga M (2021) Ecosistemas colombianos. amenazas y riesgos. Editorial Pontificia Universidad Javeriana, https://doi.org/10.11144/javeriana.9789587816013

[43]

Fagua J, Cabrera E, Gonzalez VH. The effect of highly variable topography on the spatial distribution of Aniba perutilis (Lauraceae) in the Colombian Andes. Rev Biol Trop, 2013, 61(1): 301-309

[44]

Gałecki A, Burzykowski T (2012) Linear mixed-effects model. Springer New York, pp 245–273. https://doi.org/10.1007/978-1-4614-3900-4_13

[45]

Gallois EC, Myers-Smith IH, Daskalova GN, Kerby JT, Thomas HJD. Cunliffe AM (2023) Summer litter decomposition is moderated by scale-dependent microenvironmental variation in tundra ecosystems. Oikos, 2023, 11 e10261

[46]

García-Palacios P, Ashley Shaw E, Wall DH, Hättenschwiler S. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol Lett, 2016, 19(5): 554-563

[47]

Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S. Diversity meets decomposition. Trends Ecol Evol, 2010, 25(6): 372-380

[48]

Giweta M. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: a review. J Ecol Environ, 2020, 44(1): 11

[49]

Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica, 2001, 4: 1-9

[50]

Harper WV. Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels JL. Reduced major axis regression. Wiley StatsRef: Statistics reference online, 2016, New Jersey, Wiley1-6

[51]

Homeier J, Seeler T, Pierick K, Leuschner C. Leaf trait variation in species-rich tropical Andean forests. Sci Rep, 2021, 11(1): 9993

[52]

Hurtado-M AB, Echeverry-Galvis , Salgado-Negret B, Muñoz JC, Posada JM, Norden N. Little trace of floristic homogenization in peri-urban Andean secondary forests despite high anthropogenic transformation. J Ecol, 2021, 109(31468-1478

[53]

IDEAM–Instituto de Hidrología Meteorología y Estudios Ambientales (2024) Climatological characteristics of major cities and tourist municipalities. http://www.ideam.gov.co/documents/21021/418894/Caracter%C3%ADsticas+de+Ciudades+Principales+y+Municipios+Tur%C3%ADsticos.pdf/c3ca90c8-1072-434a-a235-91baee8c73fc

[54]

James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning: with applications in R. Springer, US,, 2021

[55]

JASP Team (2024). JASP (Version 0.14.1). https://jasp-stats.org

[56]

Joly FX, Milcu A, Scherer-Lorenzen M, Jean LK, Bussotti F, Dawud SM, Müller S, Pollastrini M, Raulund-Rasmussen K, Vesterdal L, Hättenschwiler S. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytol, 2017, 214(3): 1281-1293

[57]

Joly FX, Scherer-Lorenzen M, Hättenschwiler S. Resolving the intricate role of climate in litter decomposition. Nat Ecol Evol, 2023, 7(2): 214-223

[58]

Kaspari M, Yanoviak SP. Biogeography of litter depth in tropical forests: evaluating the phosphorus growth rate hypothesis. Funct Ecol, 2008, 22(5): 919-923

[59]

Kou L, Jiang L, Hättenschwiler S, Zhang MM, Niu SL, Fu XL, Dai XQ, Yan H, Li SG, Wang HM. Diversity-decomposition relationships in forests worldwide. Elife, 2020, 9 e55813

[60]

Krishna MP, Mohan M. Litter decomposition in forest ecosystems: a review. Energy Ecol Environ, 2017, 2(4): 236-249

[61]

Levin SA (1992) The problem of pattern and scale in ecology. In: Ecological time series. Springer US, pp 277–326. https://doi.org/10.1007/978-1-4615-1769-6_15

[62]

Ma LW, Liu L, Lu YS, Chen L, Zhang ZC, Zhang HW, Wang XR, Shu L, Yang QP, Song QN, Peng QH, Yu ZP, Zhang J. When microclimates meet soil microbes: Temperature controls soil microbial diversity along an elevational gradient in subtropical forests. Soil Biol Biochem, 2022, 166 108566

[63]

Ma SY, Chen SB, Ding Y, He ZS, Hu G, Liu J, Luo YH, Song K, Yang YC, Huang XL, Gao MX, Liu L, Chen B, He XJ, Lu XR, Lv BW, Ma LL, Meng YN, Tian ZP, Zhang HW, Zhang XJ, Zhang YS, Zhang ZC, Li SP, Zhang J. What controls forest litter decomposition? A coordinated distributed teabag experiment across ten mountains. Ecography, 2024

[64]

Makkonen M, Berg MP, Handa IT, Hättenschwiler S, van Ruijven J, van Bodegom PM, Aerts R. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett, 2012, 15(9): 1033-1041

[65]

Makkonen M, Berg MP, van Logtestijn RSP, van Hal JR, Aerts R. Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos, 2013, 122(7): 987-997

[66]

Mata-Guel EO, Soh MCK, Butler CW, Morris RJ, Razgour O, Peh KS. Impacts of anthropogenic climate change on tropical montane forests: an appraisal of the evidence. Biol Rev Camb Philos Soc, 2023, 98(4): 1200-1224

[67]

Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ. Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic matter. Plant Soil, 1989, 115(2): 189-198

[68]

Montañez G, Arcila O, Pacheco JC. Hacia Dónde va la Sabana de Bogotá?, 1994, Modernización, Conflicto, Ambiente y Sociedad, Universidad Nacional de Colombia. Bogotá191

[69]

Montgomery DC (2019) Design and Analysis of Experiments (10th ed.). Wiley, New Jersey, p 688.

[70]

Morffi-Mestre H, Ángeles-Pérez G, Powers JS, Andrade JL, Feldman RE, May-Pat F, Chi-May F, Dupuy-Rada JM. Leaf litter decomposition rates: influence of successional age, topography and microenvironment on six dominant tree species in a tropical dry forest. Front for Glob Change, 2023, 6: 1082233

[71]

Morffi-Mestre, H. (2021). Estimación de la producción de hojarasca y la descomposición foliar en un bosque tropical seco en La Reserva Biocultural Kaxil Kiuic, Yucatán, México. Doctoral dissertation, Centro de Investigaciones Científicas de Yucatán.

[72]

Moser G, Leuschner C, Hertel D, Graefe S, Soethe N, Iost S. Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Glob Change Biol, 2011, 17(6): 2211-2226

[73]

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature, 2000, 403(6772853-858

[74]

Myster RW (2020) Introduction. In: The Andean cloud forest. Springer International Publishing, pp 1–23. https://doi.org/10.1007/978-3-030-57344-7_1

[75]

Njoroge DM, Dossa GGO, Ye LP, Lin XY, Schaefer D, Tomlinson K, Zuo J, Cornelissen JHC. Fauna access outweighs litter mixture effect during leaf litter decomposition. Sci Total Environ, 2023, 860 160190

[76]

Oliva RL, Veen GF, Tanaka MO. Soil nutrient dissimilarity and litter nutrient limitation as major drivers of home field advantage in riparian tropical forests. Biotropica, 2023, 55(3): 628-638

[77]

Olson JS. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 1963, 44(2): 322-331

[78]

Orgiazzi A, Singh B, Wall D, Barrios E, Kandeler E, Moreira F, De Deyn G, Chotte J, Six J, Hedlund K, Briones M, Miko L, Johnson N, Ramirez K, Fierer N, Kaneko N, Lavelle P, Eggleton P, Lemanceau P, Bardgett R, Jeffery S, Fraser T, Behan Pelletier V, Van Der Putten W, Montanarella L, Jones A. Global Soil Biodiversity Atlas, 2015, Luxembourg, Publications Office of the European Union175

[79]

Orme CDL, Davies RG, Burgess M, Eigenbrod F, Pickup N, Olson VA, Webster AJ, Ding TS, Rasmussen PC, Ridgely RS, Stattersfield AJ, Bennett PM, Blackburn TM, Gaston KJ, Owens IPF. Global hotspots of species richness are not congruent with endemism or threat. Nature, 2005, 436(7053): 1016-1019

[80]

Ostertag R, Restrepo C, Dalling JW, Martin PH, Abiem I, Aiba SI, Alvarez-Dávila E, Aragón R, Ataroff M, Chapman H, Cueva-Agila AY, Fadrique B, Fernández RD, González G, Gotsch SG, Häger A, Homeier J, Iñiguez-Armijos C, Llambí LD, Moore GW, Næsborg RR, López LNP, Pompeu PV, Powell JR, Correa JAR, Scharnagl K, Tobón C, Williams CB. Litter decomposition rates across tropical montane and lowland forests are controlled foremost by climate. Biotropica, 2022, 54(2): 309-326

[81]

Parsons SA, Congdon RA, Lawler IR. Determinants of the pathways of litter chemical decomposition in a tropical region. New Phytol, 2014, 203(3): 873-882

[82]

Peguero G, Sardans J, Asensio D, Fernández-Martínez M, Gargallo-Garriga A, Grau O, Llusià J, Margalef O, Márquez L, Ogaya R, Urbina I, Courtois EA, Stahl C, Van Langenhove L, Verryckt LT, Richter A, Janssens IA, Peñuelas J. Nutrient scarcity strengthens soil fauna control over leaf litter decomposition in tropical rainforests. Proc Biol Sci, 2019, 286: 20191300

[83]

Pereira A, Figueiredo A, Ferreira V. Invasive Acacia tree species affect instream litter decomposition through changes in water nitrogen concentration and litter characteristics. Microb Ecol, 2021, 82(1): 257-273

[84]

Pérez Harguindeguy N, Cortez J, Garnier E, Gillon D, Poca M. Predicting leaf litter decomposability: an exploratory assessment of leaf traits, litter traits and spectral properties in six Mediterranean herbaceous species. Ecol Austral, 2015, 25(154-64

[85]

Pérez-Harguindeguy N, Díaz S, Cornelissen JHC, Vendramini F, Cabido M, Castellanos A. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil, 2000, 218(1): 21-30

[86]

Pierick K, Leuschner C, Homeier J. Topography as a factor driving small-scale variation in tree fine root traits and root functional diversity in a species-rich tropical montane forest. New Phytol, 2021, 230(1): 129-138

[87]

Pierick K, Leuschner C, Link RM, Báez S, Velescu A, Wilcke W, Homeier J. Above- and belowground strategies of tropical montane tree species are coordinated and driven by small-scale nitrogen availability. Funct Ecol, 2024, 38(6): 1364-1377

[88]

Pinos J, Studholme A, Carabajo A, Gracia C. Leaf litterfall and decomposition ofPolylepis reticulatain the treeline of the Ecuadorian Andes. Mt Res Dev, 2017, 37(1): 87-96

[89]

Piper FI, Cárdenas A, Zúñiga-Feest A, Orlando J, Leiva D, Rolleri A. Microenvironment has little effect on the litter decomposition rate of temperate trees. Can J for Res, 2024, 54(1): 83-96

[90]

Powers JS, Montgomery RA, Adair EC, Brearley FQ, DeWalt SJ, Castanho CT, Chave J, Deinert E, Ganzhorn JU, Gilbert ME, González-Iturbe JA, Bunyavejchewin S, Grau HR, Harms KE, Hiremath A, Iriarte-Vivar S, Manzane E, De Oliveira AA, Poorter L, Ramanamanjato JB, Salk C, Varela A, Weiblen GD, Lerdau MT. Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J Ecol, 2009, 97(4): 801-811

[91]

Prentice IC, Farquhar G, Fasham M, Goulden M, Heimann M, Jaramillo V, Kheshgi H, Le Queré C, Scholes RJ, Wallace D. The carbon cycle and atmospheric carbon dioxide, 2001, Cambridge, Cambridge University Press237

[92]

Prescott CE. Do rates of litter decomposition tell us anything we really need to know?. For Ecol Manag, 2005, 220(1–3): 66-74

[93]

Prescott CE. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?. Biogeochemistry, 2010, 101(1): 133-149

[94]

Preston CM, Nault JR, Trofymow JA, Smyth C. Chemical changes during 6 Years of decomposition of 11 litters in some Canadian forest sites part 1 elemental composition tannins phenolics and proximate fractions. Ecosystems, 2009, 12(7): 1053-1077

[95]

Reich PB. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol, 2014, 102(2): 275-301

[96]

Romero-Torres M, Varela A. Edge effect on the decomposition process of leaf litter in cloud forest. Acta Biol Colomb, 2011, 16(2): 155-174

[97]

Salinas N, Malhi Y, Meir P, Silman M, Roman-Cuesta R, Huaman J, Salinas D, Huaman V, Gibaja A, Mamani M, Farfan F. The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytol, 2011, 189(4): 967-977

[98]

Santiago LS. Extending the leaf economics spectrum to decomposition: evidence from a tropical forest. Ecology, 2007, 88: 1126-1131

[99]

Sayer EJ. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev Camb Philos Soc, 2005, 81(1): 1-31

[100]

Seidelmann KN, Scherer-Lorenzen M, Niklaus PA. Direct vs. microclimate-driven effects of tree species diversity on litter decomposition in young subtropical forest stands. PLoS ONE, 2016, 11: 0160569

[101]

Siefert A, et al.. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol Lett, 2015, 18(12): 1406-1419

[102]

Sotes G, Henríquez C, Bustamante RO. Seedling distribution and seed germination of chilean lucumo (Pouteria splendens) in Los Molles. Rev Chil Hist Nat, 2013, 86: 337-344

[103]

Tobón C. Myster RW. Ecohydrology of Tropical Andean Cloud Forests. The Andean cloud forest, 2021, Cham, Springer61-87

[104]

Varela V, Barriga P, Ahumada JA. Comparación de factores abióticos relacionados con la descomposición de hojarasca entre fragmentos y no fragmentos de bosque altoandino nublado (Sabana de Bogotá, Colombia). Ecotropicos, 2002, 15(2): 185-193

[105]

Vivanco L, Austin AT. Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia. Argentina Glob Change Biol, 2011, 17(5): 1963-1974

[106]

von Arx G, Pannatier EG, Thimonier A, Rebetez M. Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. J Ecol, 2013, 101(5): 1201-1213

[107]

Wall DH, Bradford MA, John MG, Trofymow JA, Behan-Pelletier VA, Bignell DE, Dangerfield JM, Parton WJ, Rusek J, Voigt W, Wolters V. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob Change Biol, 2008, 14(11): 2661-2677

[108]

Wang B, Blondeel H, Baeten L, Djukic I, De Lombaerde E, Verheyen K. Direct and understorey-mediated indirect effects of human-induced environmental changes on litter decomposition in temperate forest. Soil Biol Biochem, 2019, 138 107579

[109]

Wang QW, Robson TM, Pieristè M, Oguro M, Oguchi R, Murai Y, Kurokawa H. Testing trait plasticity over the range of spectral composition of sunlight in forb species differing in shade tolerance. J Ecol, 2020, 108(5): 1923-1940

[110]

Wang QW, Pieristè M, Liu CG, Kenta T, Robson TM, Kurokawa H. The contribution of photodegradation to litter decomposition in a temperate forest gap and understorey. New Phytol, 2021, 229(5): 2625-2636

[111]

Wang J, Ge Y, Cornelissen JHC, Wang XY, Gao S, Bai Y, Chen T, Jing ZW, Zhang CB, Liu WL, Li JM, Yu FH. Litter nitrogen concentration changes mediate effects of drought and plant species richness on litter decomposition. Oecologia, 2022, 198(2): 507-518

[112]

Wardle DA, Nilsson MC, Zackrisson O, Gallet C. Determinants of litter mixing effects in a Swedish boreal forest. Soil Biol Biochem, 2003, 35(6): 827-835

[113]

Waring BG, Adams R, Branco S, Powers JS. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests. New Phytol, 2016, 209(2): 845-854

[114]

Werner FA, Homeier J. Is tropical montane forest heterogeneity promoted by a resource-driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient. Funct Ecol, 2015, 29(3): 430-440

[115]

Wilcke W, Oelmann Y, Schmitt A, Valarezo C, Zech W, Homeier J. Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. J Plant Nutr Soil Sci, 2008, 171(2): 220-230

[116]

Wild J, Kopecký M, Macek M, Martin Š, Jankovec J, Haase T. Climate at ecologically relevant scales: a new temperature and soil moisture logger for long-term microclimate measurement. Agric for Meteor, 2019, 268: 40-47

[117]

Xu X, Shi Z, Li DJ, Rey A, Ruan HH, Craine JM, Liang JY, Zhou JZ, Luo YQ. Soil properties control decomposition of soil organic carbon: results from data-assimilation analysis. Geoderma, 2016, 262: 235-242

[118]

Zhang DQ, Hui DF, Luo YQ, Zhou GY. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol, 2008, 1(2): 85-93

[119]

Zhang SM, Landuyt D, Verheyen K, De Frenne P. Tree species mixing can amplify microclimate offsets in young forest plantations. J Appl Ecol, 2022, 59(6): 1428-1439

[120]

Zhang SM, Landuyt D, Dhiedt E, De Frenne P, Verheyen K. Tree species diversity affects litter decomposition via modification of the microenvironment. Ecosystems, 2024, 27(4): 508-522

[121]

Zhou SX, Butenschoen O, Barantal S, Handa IT, Makkonen M, Vos V, Aerts R, Berg MP, McKie B, Van Ruijven J, Hättenschwiler S, Scheu S. Decomposition of leaf litter mixtures across biomes: the role of litter identity, diversity and soil fauna. J Ecol, 2020, 108(6): 2283-2297

Funding

Universidad del Rosario

RIGHTS & PERMISSIONS

The Author(s)

PDF

250

Accesses

0

Citation

Detail

Sections
Recommended

/