The effect of forest microenvironment on litter decomposition in the Andean tropical mountains

Dennis Castillo-Figueroa

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 102

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 102 DOI: 10.1007/s11676-025-01887-y
Original Paper
research-article

The effect of forest microenvironment on litter decomposition in the Andean tropical mountains

Author information +
History +
PDF

Abstract

Upper Andean tropical forests are renowned for their extraordinary biodiversity and heterogeneous environmental conditions. Despite the critical role of litter decomposition in carbon and nutrient cycles, its dynamics in this region remains unexplored at finer scales. This study investigates how microsite conditions influence litter decomposition of 15 upper Andean species over time. A reciprocal translocation field experiment was conducted over 18 months in 14 permanent plots within four sites in Colombian Andean mountain forests. Each plot contained three litterbeds (microsites), each with the 15 species, harvested at 3, 6, 12 and 18 months, totaling 2520 litterbags. Different forest variables, including canopy openness, leaf area index, slope and depth of litter, were measured in each litterbed. ANOVAs and linear mixed models were used to assess variation between sites and plots respectively, while multiple linear regression analyses evaluated the effects of forest variables on decay rates over time at the microsite scale. Results showed differences in absolute decay rates between sites but consistent relative decay rates, indicating varying magnitudes of decomposition, yet maintaining the same order based on their litter quality. Decay rates varied between species, with more variation in labile species compared to recalcitrant ones. Despite substantial variation in forest characteristics within sites, their influence on litter decomposition was minimal and declined over time. This suggests that, at finer spatial scales, the forest microenvironment plays a lesser role in litter decomposition, with litter quality emerging as the primary driver. This study is a step towards understanding the fine-scale dynamics of litter decomposition in upper Andean tropical forests, highlighting the intricate interplay between microenvironmental factors and decomposition processes.

The online version is available at http://link.springer.com

Corresponding editor: Shuxuan LI

The online version contains supplementary material available at https://doi.org/10.1007/s11676-025-01887-y.

Keywords

Decomposition / Tropical montane forests / Forest structure / Microenvironmental conditions / Microsite scale

Cite this article

Download citation ▾
Dennis Castillo-Figueroa. The effect of forest microenvironment on litter decomposition in the Andean tropical mountains. Journal of Forestry Research, 2025, 36(1): 102 DOI:10.1007/s11676-025-01887-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AertsR. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 1997, 793439.

[2]

Antonio-FragalaF, Obregón-NeiraN. Recharge estimation in aquifers of the bogota savannah. Ingenieria Y Univ, 2011, 15: 145-169.

[3]

ArmstrongRA, HiltonACArmstrongRA, HiltonAC. Stepwise Multiple Regression. Statistical analysis in microbiology: Statnotes, 2010, Hoboken. Wiley. 135138

[4]

AustinAT, BallaréCL. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proc Natl Acad Sci USA, 2010, 107(10): 4618-4622.

[5]

AustinAT, VivancoL. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature, 2006, 442(7102): 555-558.

[6]

AustinAT, Soledad MéndezM, BallaréCL. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proc Natl Acad Sci USA, 2016, 113(16): 4392-4397.

[7]

BakkerMA, Carreño-RocabadoG, PoorterL. Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Funct Ecol, 2011, 25(3): 473-483.

[8]

BarczykMK, Acosta-RojasDC, EspinosaCI, SchleuningM, NeuschulzEL. Biotic pressures and environmental heterogeneity shape beta-diversity of seedling communities in tropical montane forests. Ecography, 2023, 20236e506538

[9]

BarczykMK, Acosta-RojasDC, EspinosaCI, HomeierJ, TinocoBA, VelescuA, WilckeW, SchleuningM. Neuschulz EL (2024) Environmental conditions differently shape leaf, seed and seedling trait composition between and within elevations of tropical montane forests. Oikos, 2024, 11. e10421

[10]

BélangerN, CollinA, Ricard-PichéJ, KembelSW, RivestD. Microsite conditions influence leaf litter decomposition in sugar maple bioclimatic domain of Quebec. Biogeochemistry, 2019, 145(1): 107-126.

[11]

BergB, LönnM. Long-term effects of climate and litter chemistry on rates and stable fractions of decomposing Scots pine and Norway spruce needle litter—a synthesis. Forests, 2022, 131125.

[12]

BergB, McClaughertyC. Plant litter: decomposition, humus formation, carbon sequestration. Springer, Berlin Heidelberg,, 2014.

[13]

BergB, LönnM, NiXY, SunT, DongLL, GaitnieksT, Virzo De SantoA, JohanssonMB. Decomposition rates in late stages of Scots pine and Norway spruce needle litter: Influence of nutrients and substrate properties over a climate gradient. For Ecol Manag, 2022, 522. 120452

[14]

BradfordMA, WarrenRJII, BaldrianP, CrowtherTW, MaynardDS, OldfieldEE, WiederWR, WoodSA, KingJR. Climate fails to predict wood decomposition at regional scales. Nat Clim Change, 2014, 4: 625-630.

[15]

BradfordMA, BergB, MaynardDS, WiederWR, WoodSA. Understanding the dominant controls on litter decomposition. J Ecol, 2016, 104(1): 229-238.

[16]

BradfordMA, Ciska VeenGF, BonisA, BradfordEM, ClassenAT, CornelissenHC, J, Crowther TW, De Long JR, Freschet GT, Kardol P, Manrubia-Freixa M, Maynard DS, Newman GS, Logtestijn RSP, Viketoft M, Wardle DA, Wieder WR, Wood SA, van der Putten WH, . A test of the hierarchical model of litter decomposition. Nat Ecol Evol., 2017, 1(12): 1836-1845.

[17]

BruhwilerL, MichalakAM, BirdseyR, FisherJB, HoughtonRA, HuntzingerDN, MillerJBCavallaroN, ShresthaG, BirdseyR, MayesMA, NajjarRG, ReedSC, Romero-LankaoP, ZhuZ. Overview of the global carbon cycle. Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report, 2018, Washington. US Global Change Research Program. 4270.

[18]

CalbiM, ClericiN, BorschT, BrokampG. Reconstructing long term high Andean forest dynamics using historical aerial imagery: a case study in Colombia. Forests, 2020, 118788.

[19]

CalbiM, Fajardo-GutiérrezF, PosadaJM, LückingR, BrokampG, BorschT. Seeing the wood despite the trees: exploring human disturbance impact on plant diversity, community structure, and standing biomass in fragmented high Andean forests. Ecol Evol, 2021, 11(5): 2110-2172.

[20]

CanessaR, van den BrinkL, BerdugoMB, HättenschwilerS, RiosRS, SaldañaA, TielbörgerK, BaderMY. Trait functional diversity explains mixture effects on litter decomposition at the arid end of a climate gradient. J Ecol, 2022, 110(9): 2219-2231.

[21]

CárdenasRE, DonosoDA, ArgotiA, DanglesO. Functional consequences of realistic extinction scenarios in Amazonian soil food webs. Ecosphere, 2017, 82. e01692

[22]

Castillo-AvilaC, Castillo-FigueroaD, PosadaJM. Drivers of soil fauna communities along a successional gradient in upper Andean tropical forests. Soil Biol Biochem, 2025, 202. 109692

[23]

Castillo-FigueroaD. Carbon cycle in tropical upland ecosystems: a global review. Web Ecol, 2021, 21(2): 109-136.

[24]

Castillo-FigueroaD. Litter mixture effects on decomposition change with forest succession and are influenced by time and soil fauna in tropical mountain Andes. Folia Oecol, 2024, 51(1): 1-107.

[25]

Castillo-FigueroaD. No home-field advantage in upper Andean tropical forests despite strong differences in site environmental characteristics. Iforest, 2024, 17(5): 286-294.

[26]

Castillo-FigueroaD, Castillo-AvilaC. Little influence of soil fauna on decomposition in successional upper Andean tropical forests. Soil Ecol Lett, 2025, 72. 240277

[27]

Castillo-FigueroaD, González-MeloA, PosadaJM. Wood density is related to aboveground biomass and productivity along a successional gradient in upper Andean tropical forests. Front Plant Sci, 2023, 141276424.

[28]

Castillo-FigueroaD, Soler-MarínD, PosadaJM. Functional traits and species identity drive decomposition along a successional gradient in upper Andean tropical forests. Biotropica, 2025, 571. e13425

[29]

Castillo-Figueroa D, Posada JM (2025) The role of litterfall in understanding the ecological integrity of endangered upper Andean successional forests. In: Conservation of Andean forests. Springer Nature Switzerland, pp 59–76. https://doi.org/10.1007/978-3-031-80805-0_3

[30]

CedilloH, García-MonteroLG, ToledoS, MosqueraP, BenalcázarP, ZeaP, JadánO. Influencia del clima sobre la composición, la diversidad, la biomasa y los rasgos funcionales de la vegetación arbórea de dos bosques tropicales montanos andinos. Ecol Austral, 2023, 33(3): 716-729.

[31]

ChattamvelliR, ShanmugamRDescriptive Statistics for Scientists and Engineers, 2023, Switzerland. Springer. 130

[32]

Chatterjee S, Hadi AS (2006) Regression analysis by example: Chatterjee/regression. John Wiley & Sons, Inc., New York https://doi.org/10.1002/0470055464

[33]

ChatterjeeS, SimonoffJSHandbook of regression analysis, 2013, New York. Wiley. 236

[34]

ChenJJ, ZhuJ, WangZW, XingC, ChenB, WangXL, WeiCS, LiuJF, HeZS, XuDW. Canopy gaps control litter decomposition and nutrient release in subtropical forests. Forests, 2023, 144673.

[35]

ChibaA, UchidaY, KublikS, VestergaardG, BueggerF, SchloterM, SchulzS. Soil bacterial diversity is positively correlated with decomposition rates during early phases of maize litter decomposition. Microorganisms, 2021, 92357.

[36]

CornwellWK, CornelissenJHC, AmatangeloK, DorrepaalE, EvinerVT, GodoyO, HobbieSE, HoorensB, KurokawaH, Pérez-HarguindeguyN, QuestedHM, SantiagoLS, WardleDA, WrightIJ, AertsR, AllisonSD, van BodegomP, BrovkinV, ChatainA, CallaghanTV, DíazS, GarnierE, GurvichDE, KazakouE, KleinJA, ReadJ, ReichPB, SoudzilovskaiaNA, Victoria VaierettiM, WestobyM. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett, 2008, 11(10): 1065-1071.

[37]

CoûteauxMM, BottnerP, BergB. Litter decomposition, climate and liter quality. Trends Ecol Evol, 1995, 10(2): 63-66.

[38]

de la RivaEG, PrietoI, VillarR. The leaf economic spectrum drives leaf litter decomposition in Mediterranean forests. Plant Soil, 2019, 435(1): 353-366.

[39]

DjukicI, Kepfer-RojasS, SchmidtIK, LarsenKS, BeierC, BergB, VerheyenK. Early stage litter decomposition across biomes. Sci Total Environ, 2018, 628–629: 1369-1394

[40]

DuqueA, PeñaMA, CuestaF, González-CaroS, KennedyP, PhillipsOL, Calderón-LoorM, BlundoC, CarillaJ, CayolaL, Farfán-RíosW, FuentesA, GrauR, HomeierJ, Loza-RiveraMI, MalhiY, MaliziaA, MaliziaL, Martínez-VillaJA, MyersJA, Osinaga-AcostaO, PeralvoM, PintoE, SaatchiS, SilmanM, Sebastián TelloJ, Terán-ValdezA, FeeleyKJ. Mature Andean forests as globally important carbon sinks and future carbon refuges. Nat Commun, 2021, 1212138.

[41]

EsquivelJ, ParkBB, CasanovesF, DelgadoD, ParkGE, FineganB. Altitude and species identity drive leaf litter decomposition rates of ten species on a 2950 m altitudinal gradient in Neotropical rain forests. Biotropica, 2020, 52(1): 11-21.

[42]

Etter A, Andrade Á, Zúñiga M (2021) Ecosistemas colombianos. amenazas y riesgos. Editorial Pontificia Universidad Javeriana, https://doi.org/10.11144/javeriana.9789587816013

[43]

FaguaJ, CabreraE, GonzalezVH. The effect of highly variable topography on the spatial distribution of Aniba perutilis (Lauraceae) in the Colombian Andes. Rev Biol Trop, 2013, 61(1): 301-309.

[44]

Gałecki A, Burzykowski T (2012) Linear mixed-effects model. Springer New York, pp 245–273. https://doi.org/10.1007/978-1-4614-3900-4_13

[45]

GalloisEC, Myers-SmithIH, DaskalovaGN, KerbyJT, ThomasHJD. Cunliffe AM (2023) Summer litter decomposition is moderated by scale-dependent microenvironmental variation in tundra ecosystems. Oikos, 2023, 11. e10261

[46]

García-PalaciosP, Ashley ShawE, WallDH, HättenschwilerS. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol Lett, 2016, 19(5): 554-563.

[47]

GessnerMO, SwanCM, DangCK, McKieBG, BardgettRD, WallDH, HättenschwilerS. Diversity meets decomposition. Trends Ecol Evol, 2010, 25(6): 372-380.

[48]

GiwetaM. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: a review. J Ecol Environ, 2020, 44111.

[49]

HammerØ, HarperDAT, RyanPD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica, 2001, 4: 1-9

[50]

HarperWVBalakrishnanN, ColtonT, EverittB, PiegorschW, RuggeriF, TeugelsJL. Reduced major axis regression. Wiley StatsRef: Statistics reference online, 2016, New Jersey. Wiley. 16.

[51]

HomeierJ, SeelerT, PierickK, LeuschnerC. Leaf trait variation in species-rich tropical Andean forests. Sci Rep, 2021, 1119993.

[52]

Hurtado-MAB, Echeverry-Galvis, Salgado-NegretB, MuñozJC, PosadaJM, NordenN. Little trace of floristic homogenization in peri-urban Andean secondary forests despite high anthropogenic transformation. J Ecol, 2021, 109(3): 1468-1478.

[53]

IDEAM–Instituto de Hidrología Meteorología y Estudios Ambientales (2024) Climatological characteristics of major cities and tourist municipalities. http://www.ideam.gov.co/documents/21021/418894/Caracter%C3%ADsticas+de+Ciudades+Principales+y+Municipios+Tur%C3%ADsticos.pdf/c3ca90c8-1072-434a-a235-91baee8c73fc

[54]

JamesG, WittenD, HastieT, TibshiraniR. An introduction to statistical learning: with applications in R. Springer, US,, 2021.

[55]

JASP Team (2024). JASP (Version 0.14.1). https://jasp-stats.org

[56]

JolyFX, MilcuA, Scherer-LorenzenM, JeanLK, BussottiF, DawudSM, MüllerS, PollastriniM, Raulund-RasmussenK, VesterdalL, HättenschwilerS. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytol, 2017, 214(3): 1281-1293.

[57]

JolyFX, Scherer-LorenzenM, HättenschwilerS. Resolving the intricate role of climate in litter decomposition. Nat Ecol Evol, 2023, 7(2): 214-223.

[58]

KaspariM, YanoviakSP. Biogeography of litter depth in tropical forests: evaluating the phosphorus growth rate hypothesis. Funct Ecol, 2008, 22(5): 919-923.

[59]

KouL, JiangL, HättenschwilerS, ZhangMM, NiuSL, FuXL, DaiXQ, YanH, LiSG, WangHM. Diversity-decomposition relationships in forests worldwide. Elife, 2020, 9. e55813

[60]

KrishnaMP, MohanM. Litter decomposition in forest ecosystems: a review. Energy Ecol Environ, 2017, 2(4): 236-249.

[61]

Levin SA (1992) The problem of pattern and scale in ecology. In: Ecological time series. Springer US, pp 277–326. https://doi.org/10.1007/978-1-4615-1769-6_15

[62]

MaLW, LiuL, LuYS, ChenL, ZhangZC, ZhangHW, WangXR, ShuL, YangQP, SongQN, PengQH, YuZP, ZhangJ. When microclimates meet soil microbes: Temperature controls soil microbial diversity along an elevational gradient in subtropical forests. Soil Biol Biochem, 2022, 166. 108566

[63]

MaSY, ChenSB, DingY, HeZS, HuG, LiuJ, LuoYH, SongK, YangYC, HuangXL, GaoMX, LiuL, ChenB, HeXJ, LuXR, LvBW, MaLL, MengYN, TianZP, ZhangHW, ZhangXJ, ZhangYS, ZhangZC, LiSP, ZhangJ. What controls forest litter decomposition? A coordinated distributed teabag experiment across ten mountains. Ecography, 2024.

[64]

MakkonenM, BergMP, HandaIT, HättenschwilerS, van RuijvenJ, van BodegomPM, AertsR. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett, 2012, 15(9): 1033-1041.

[65]

MakkonenM, BergMP, van LogtestijnRSP, van HalJR, AertsR. Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos, 2013, 122(7): 987-997.

[66]

Mata-GuelEO, SohMCK, ButlerCW, MorrisRJ, RazgourO, PehKS. Impacts of anthropogenic climate change on tropical montane forests: an appraisal of the evidence. Biol Rev Camb Philos Soc, 2023, 98(4): 1200-1224.

[67]

MelilloJM, AberJD, LinkinsAE, RiccaA, FryB, NadelhofferKJ. Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic matter. Plant Soil, 1989, 115(2): 189-198.

[68]

MontañezG, ArcilaO, PachecoJCHacia Dónde va la Sabana de Bogotá?, 1994, Modernización, Conflicto, Ambiente y Sociedad. Universidad Nacional de Colombia. Bogotá. 191

[69]

Montgomery DC (2019) Design and Analysis of Experiments (10th ed.). Wiley, New Jersey, p 688.

[70]

Morffi-MestreH, Ángeles-PérezG, PowersJS, AndradeJL, FeldmanRE, May-PatF, Chi-MayF, Dupuy-RadaJM. Leaf litter decomposition rates: influence of successional age, topography and microenvironment on six dominant tree species in a tropical dry forest. Front for Glob Change, 2023, 61082233.

[71]

Morffi-Mestre, H. (2021). Estimación de la producción de hojarasca y la descomposición foliar en un bosque tropical seco en La Reserva Biocultural Kaxil Kiuic, Yucatán, México. Doctoral dissertation, Centro de Investigaciones Científicas de Yucatán.

[72]

MoserG, LeuschnerC, HertelD, GraefeS, SoetheN, IostS. Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Glob Change Biol, 2011, 17(6): 2211-2226.

[73]

MyersN, MittermeierRA, MittermeierCG, da FonsecaGA, KentJ. Biodiversity hotspots for conservation priorities. Nature, 2000, 403(6772): 853-858.

[74]

Myster RW (2020) Introduction. In: The Andean cloud forest. Springer International Publishing, pp 1–23. https://doi.org/10.1007/978-3-030-57344-7_1

[75]

NjorogeDM, DossaGGO, YeLP, LinXY, SchaeferD, TomlinsonK, ZuoJ, CornelissenJHC. Fauna access outweighs litter mixture effect during leaf litter decomposition. Sci Total Environ, 2023, 860. 160190

[76]

OlivaRL, VeenGF, TanakaMO. Soil nutrient dissimilarity and litter nutrient limitation as major drivers of home field advantage in riparian tropical forests. Biotropica, 2023, 55(3): 628-638.

[77]

OlsonJS. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 1963, 44(2): 322-331.

[78]

OrgiazziA, SinghB, WallD, BarriosE, KandelerE, MoreiraF, De DeynG, ChotteJ, SixJ, HedlundK, BrionesM, MikoL, JohnsonN, RamirezK, FiererN, KanekoN, LavelleP, EggletonP, LemanceauP, BardgettR, JefferyS, FraserT, Behan PelletierV, Van Der PuttenW, MontanarellaL, JonesAGlobal Soil Biodiversity Atlas, 2015, Luxembourg. Publications Office of the European Union. 175

[79]

OrmeCDL, DaviesRG, BurgessM, EigenbrodF, PickupN, OlsonVA, WebsterAJ, DingTS, RasmussenPC, RidgelyRS, StattersfieldAJ, BennettPM, BlackburnTM, GastonKJ, OwensIPF. Global hotspots of species richness are not congruent with endemism or threat. Nature, 2005, 436(7053): 1016-1019.

[80]

OstertagR, RestrepoC, DallingJW, MartinPH, AbiemI, AibaSI, Alvarez-DávilaE, AragónR, AtaroffM, ChapmanH, Cueva-AgilaAY, FadriqueB, FernándezRD, GonzálezG, GotschSG, HägerA, HomeierJ, Iñiguez-ArmijosC, LlambíLD, MooreGW, NæsborgRR, LópezLNP, PompeuPV, PowellJR, CorreaJAR, ScharnaglK, TobónC, WilliamsCB. Litter decomposition rates across tropical montane and lowland forests are controlled foremost by climate. Biotropica, 2022, 54(2): 309-326.

[81]

ParsonsSA, CongdonRA, LawlerIR. Determinants of the pathways of litter chemical decomposition in a tropical region. New Phytol, 2014, 203(3): 873-882.

[82]

PegueroG, SardansJ, AsensioD, Fernández-MartínezM, Gargallo-GarrigaA, GrauO, LlusiàJ, MargalefO, MárquezL, OgayaR, UrbinaI, CourtoisEA, StahlC, Van LangenhoveL, VerrycktLT, RichterA, JanssensIA, PeñuelasJ. Nutrient scarcity strengthens soil fauna control over leaf litter decomposition in tropical rainforests. Proc Biol Sci, 2019, 28620191300.

[83]

PereiraA, FigueiredoA, FerreiraV. Invasive Acacia tree species affect instream litter decomposition through changes in water nitrogen concentration and litter characteristics. Microb Ecol, 2021, 82(1): 257-273.

[84]

Pérez HarguindeguyN, CortezJ, GarnierE, GillonD, PocaM. Predicting leaf litter decomposability: an exploratory assessment of leaf traits, litter traits and spectral properties in six Mediterranean herbaceous species. Ecol Austral, 2015, 25(1): 54-64.

[85]

Pérez-HarguindeguyN, DíazS, CornelissenJHC, VendraminiF, CabidoM, CastellanosA. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil, 2000, 218(1): 21-30.

[86]

PierickK, LeuschnerC, HomeierJ. Topography as a factor driving small-scale variation in tree fine root traits and root functional diversity in a species-rich tropical montane forest. New Phytol, 2021, 230(1): 129-138.

[87]

PierickK, LeuschnerC, LinkRM, BáezS, VelescuA, WilckeW, HomeierJ. Above- and belowground strategies of tropical montane tree species are coordinated and driven by small-scale nitrogen availability. Funct Ecol, 2024, 38(6): 1364-1377.

[88]

PinosJ, StudholmeA, CarabajoA, GraciaC. Leaf litterfall and decomposition ofPolylepis reticulatain the treeline of the Ecuadorian Andes. Mt Res Dev, 2017, 37(1): 87-96.

[89]

PiperFI, CárdenasA, Zúñiga-FeestA, OrlandoJ, LeivaD, RolleriA. Microenvironment has little effect on the litter decomposition rate of temperate trees. Can J for Res, 2024, 54(1): 83-96.

[90]

PowersJS, MontgomeryRA, AdairEC, BrearleyFQ, DeWaltSJ, CastanhoCT, ChaveJ, DeinertE, GanzhornJU, GilbertME, González-IturbeJA, BunyavejchewinS, GrauHR, HarmsKE, HiremathA, Iriarte-VivarS, ManzaneE, De OliveiraAA, PoorterL, RamanamanjatoJB, SalkC, VarelaA, WeiblenGD, LerdauMT. Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J Ecol, 2009, 97(4): 801-811.

[91]

PrenticeIC, FarquharG, FashamM, GouldenM, HeimannM, JaramilloV, KheshgiH, Le QueréC, ScholesRJ, WallaceDThe carbon cycle and atmospheric carbon dioxide, 2001, Cambridge. Cambridge University Press. 237

[92]

PrescottCE. Do rates of litter decomposition tell us anything we really need to know?. For Ecol Manag, 2005, 220(1–3): 66-74.

[93]

PrescottCE. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?. Biogeochemistry, 2010, 101(1): 133-149.

[94]

PrestonCM, NaultJR, TrofymowJA, SmythC. Chemical changes during 6 Years of decomposition of 11 litters in some Canadian forest sites part 1 elemental composition tannins phenolics and proximate fractions. Ecosystems, 2009, 12(7): 1053-1077.

[95]

ReichPB. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol, 2014, 102(2): 275-301.

[96]

Romero-TorresM, VarelaA. Edge effect on the decomposition process of leaf litter in cloud forest. Acta Biol Colomb, 2011, 16(2): 155-174

[97]

SalinasN, MalhiY, MeirP, SilmanM, Roman-CuestaR, HuamanJ, SalinasD, HuamanV, GibajaA, MamaniM, FarfanF. The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytol, 2011, 189(4): 967-977.

[98]

SantiagoLS. Extending the leaf economics spectrum to decomposition: evidence from a tropical forest. Ecology, 2007, 88: 1126-1131.

[99]

SayerEJ. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev Camb Philos Soc, 2005, 81(1): 1-31.

[100]

SeidelmannKN, Scherer-LorenzenM, NiklausPA. Direct vs. microclimate-driven effects of tree species diversity on litter decomposition in young subtropical forest stands. PLoS ONE, 2016, 110160569.

[101]

SiefertA, et al.. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol Lett, 2015, 18(12): 1406-1419.

[102]

SotesG, HenríquezC, BustamanteRO. Seedling distribution and seed germination of chilean lucumo (Pouteria splendens) in Los Molles. Rev Chil Hist Nat, 2013, 86: 337-344

[103]

TobónCMysterRW. Ecohydrology of Tropical Andean Cloud Forests. The Andean cloud forest, 2021, Cham. Springer. 6187

[104]

VarelaV, BarrigaP, AhumadaJA. Comparación de factores abióticos relacionados con la descomposición de hojarasca entre fragmentos y no fragmentos de bosque altoandino nublado (Sabana de Bogotá, Colombia). Ecotropicos, 2002, 15(2): 185-193

[105]

VivancoL, AustinAT. Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia. Argentina Glob Change Biol, 2011, 17(5): 1963-1974.

[106]

von ArxG, PannatierEG, ThimonierA, RebetezM. Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. J Ecol, 2013, 101(5): 1201-1213.

[107]

WallDH, BradfordMA, JohnMG, TrofymowJA, Behan-PelletierVA, BignellDE, DangerfieldJM, PartonWJ, RusekJ, VoigtW, WoltersV. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob Change Biol, 2008, 14(11): 2661-2677

[108]

WangB, BlondeelH, BaetenL, DjukicI, De LombaerdeE, VerheyenK. Direct and understorey-mediated indirect effects of human-induced environmental changes on litter decomposition in temperate forest. Soil Biol Biochem, 2019, 138. 107579

[109]

WangQW, RobsonTM, PieristèM, OguroM, OguchiR, MuraiY, KurokawaH. Testing trait plasticity over the range of spectral composition of sunlight in forb species differing in shade tolerance. J Ecol, 2020, 108(5): 1923-1940.

[110]

WangQW, PieristèM, LiuCG, KentaT, RobsonTM, KurokawaH. The contribution of photodegradation to litter decomposition in a temperate forest gap and understorey. New Phytol, 2021, 229(5): 2625-2636.

[111]

WangJ, GeY, CornelissenJHC, WangXY, GaoS, BaiY, ChenT, JingZW, ZhangCB, LiuWL, LiJM, YuFH. Litter nitrogen concentration changes mediate effects of drought and plant species richness on litter decomposition. Oecologia, 2022, 198(2): 507-518.

[112]

WardleDA, NilssonMC, ZackrissonO, GalletC. Determinants of litter mixing effects in a Swedish boreal forest. Soil Biol Biochem, 2003, 35(6): 827-835.

[113]

WaringBG, AdamsR, BrancoS, PowersJS. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests. New Phytol, 2016, 209(2): 845-854.

[114]

WernerFA, HomeierJ. Is tropical montane forest heterogeneity promoted by a resource-driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient. Funct Ecol, 2015, 29(3): 430-440.

[115]

WilckeW, OelmannY, SchmittA, ValarezoC, ZechW, HomeierJ. Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. J Plant Nutr Soil Sci, 2008, 171(2): 220-230.

[116]

WildJ, KopeckýM, MacekM, MartinŠ, JankovecJ, HaaseT. Climate at ecologically relevant scales: a new temperature and soil moisture logger for long-term microclimate measurement. Agric for Meteor, 2019, 268: 40-47.

[117]

XuX, ShiZ, LiDJ, ReyA, RuanHH, CraineJM, LiangJY, ZhouJZ, LuoYQ. Soil properties control decomposition of soil organic carbon: results from data-assimilation analysis. Geoderma, 2016, 262: 235-242.

[118]

ZhangDQ, HuiDF, LuoYQ, ZhouGY. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol, 2008, 1(2): 85-93.

[119]

ZhangSM, LanduytD, VerheyenK, De FrenneP. Tree species mixing can amplify microclimate offsets in young forest plantations. J Appl Ecol, 2022, 59(6): 1428-1439.

[120]

ZhangSM, LanduytD, DhiedtE, De FrenneP, VerheyenK. Tree species diversity affects litter decomposition via modification of the microenvironment. Ecosystems, 2024, 27(4): 508-522.

[121]

ZhouSX, ButenschoenO, BarantalS, HandaIT, MakkonenM, VosV, AertsR, BergMP, McKieB, Van RuijvenJ, HättenschwilerS, ScheuS. Decomposition of leaf litter mixtures across biomes: the role of litter identity, diversity and soil fauna. J Ecol, 2020, 108(6): 2283-2297.

Funding

Universidad del Rosario

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/