Effect of snow cover and soil temperature on tree and forest floor processes: a case study in mature boreal forest

Lauri Lindfors , Vilma Ylilauri , Jie Xu , Pekka Kaitaniemi , Alessandro Zanetti , Magdalena Held , Juho Aalto , Pauliina Schiestl-Aalto , Kira Ryhti-Laine , Vicent Ribas-Costa , Yann Salmon , Jussi Heinonsalo , Anna Lintunen

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 85

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) :85 DOI: 10.1007/s11676-025-01880-5
Original Paper
research-article

Effect of snow cover and soil temperature on tree and forest floor processes: a case study in mature boreal forest

Author information +
History +
PDF

Abstract

The duration of snow cover has shortened in the boreal region, and the amount of seasonal snow decreased. This affects the coupling between soil and air temperatures and may thus lead to colder soil and deeper soil frost. We prevented snow reaching the forest floor for two winters in mature boreal forest and studied how that affects tree and forest floor processes. The studied species were Scots pine, Norway spruce, silver birch, and a dwarf shrub bilberry. Decreased soil temperature, due to the lack of snow cover, decreased forest floor respiration in winter and spring. Simultaneously, response of respiration to temperature seemed to increase, perhaps due to the exposure of forest floor vegetation to cold air temperature. Indeed, lack of snow cover induced mortality of bilberry, but the remaining ramets grew more in height and their average leaf size was larger likely to compensate for the lost plant biomass. Lack of snow cover also affected tree hydraulics as tree water uptake was decreased in spring, and the start of the sap season delayed in birch. Pine and birch tended to grow less in the snow exclusion treatment (differences not statistically significant), whereas spruce grew more. Coarse root traits, e.g. water content and cellular frost damages, were not affected by the snow exclusion treatment. The results of this case study increase our understanding on the effects of changing snow cover on spring-time tree and forest floor processes in mature boreal forest, but also reveal the need for further studies on mature trees.

Keywords

Dwarf shrubs / Fine roots / Forest floor respiration / Snow cover change / Tree hydraulics

Cite this article

Download citation ▾
Lauri Lindfors, Vilma Ylilauri, Jie Xu, Pekka Kaitaniemi, Alessandro Zanetti, Magdalena Held, Juho Aalto, Pauliina Schiestl-Aalto, Kira Ryhti-Laine, Vicent Ribas-Costa, Yann Salmon, Jussi Heinonsalo, Anna Lintunen. Effect of snow cover and soil temperature on tree and forest floor processes: a case study in mature boreal forest. Journal of Forestry Research, 2025, 36(1): 85 DOI:10.1007/s11676-025-01880-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aalto J, Scherrer D, Lenoir J, Guisan A, Luoto M. Bio-geophysical controls on soil-atmosphere thermal differences: Implications on warming Arctic ecosystems. Environ Res Lett, 2018, 13 074003

[2]

Aalto J, Anttila V, Kolari P, Korpela I, Isotalo A, Levula J, Schiestl-Aalto P, Bäck J. Hyytiälä SMEAR II forest year 2020 thinning tree and carbon inventory data2023Zenodo

[3]

Arora R. Mechanism of freeze-thaw injury and recovery: a cool retrospective and warming up to new ideas. Plant Sci, 2018, 270: 301-313

[4]

Bergh J, Linder S. Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands. Glob Change Biol, 1999, 5: 245-253

[5]

Blankinship JC, Hart SC. Consequences of manipulated snow cover on soil gaseous emission and N retention in the growing season: a meta-analysis. Ecosphere, 2012, 3: 1

[6]

Blume-Werry G, Kreyling J, Laudon H, Milbau A. Short-term climate change manipulation effects do not scale up to long-term legacies: effects of an absent snow cover on boreal forest plants. J Ecol, 2016, 104: 1638-1648

[7]

Bokhorst S, Bjerke JW, Davey MP, Taulavuori K, Taulavuori E, Laine K, Callaghan TV, Phoenix GK. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Physiol Plant, 2010, 140: 128-140

[8]

Bokhorst S, Bjerke JW, Street LE, Callaghan TV, Phoenix GK. Impacts of multiple extreme winter warming events on sub-Arctic heathland: phenology, reproduction, growth, and CO2 flux responses. Glob Change Biol, 2011, 17: 2817-2830

[9]

Brooks P, Grogan P, Templer PH, Groffman P, Öquist MG, Schimel J. Carbon and nitrogen cycling in snow-covered environments. Geogr Comp, 2011, 5: 682-699

[10]

Campbell JL, Mitchell MJ, Groffman PM, Christenson LM, Hardy JP. Winter in northeastern North America: a critical period for ecological processes. Front Ecol Environ, 2005, 3: 314-322

[11]

Charra-Vaskou K, Lintunen A, Améglio T, Badel E, Cochard H, Mayr S, Salmon Y, Suhonen H, van Rooij M, Charrier G. Xylem embolism and bubble formation during freezing suggest complex dynamics of pressure-tension in Betula pendula stems. J Exp Bot, 2023, 74: 5840-5853

[12]

Comerford DP, Schaberg PG, Templer PH, Socci AM, Campbell JL, Wallinet KF. Influence of experimental snow removal on root and canopy physiology of sugar maple trees in a northern hardwood forest. Oecologia, 2013, 171: 261-269

[13]

Day TA, Heckathorn SA, Delucia EH. Limitations of photosynthesis in Pinus taeda L. (loblolly pine) at low soil temperatures. Plant Physiol, 1991, 96: 1246-1254

[14]

Delucia EH. Effect of low root temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce (Picea engelmannii parry ex Engelm.) seedlings. Tree Physiol, 1986, 2: 143-154

[15]

Ding Y, Leppälammi-Kujansuu J, Salemaa M, Schiestl-Aalto P, Kulmala L, Ukonmaanaho L, Nöjd P, Minkkinen K, Makita N, Železnik P, Merilä P, Helmisaari H-S. Distinct patterns of below- and aboveground growth phenology and litter carbon inputs along a boreal site type gradient. For Ecol Manage, 2021, 489 119081

[16]

Du E, Zhou Z, Li P, Jiang L, Hu X, Fang J. Winter soil respiration during soil-freezing process in a boreal forest in Northeast China. J Plant Ecol, 2013, 6: 349-357

[17]

Ford KR, Harrington CA, Bansal S, Gould PJ, St Clair JB. Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir. Glob Change Biol, 2016, 22: 3712-3723

[18]

Gao D, Hagedorn F, Zhang L, Liu J, Qu G, Sun J, Peng B, Fan Z, Zheng J, Jiang P. Small and transient response of winter soil respiration and microbial communities to altered snow depth in a mid-temperate forest. App Soil Ecol, 2018, 130: 40-49

[19]

Gerdol R, Siffi C, Iacumin P, Gualmini M, Tomaselli M. Advanced snowmelt affects vegetative growth and sexual reproduction of Vaccinium myrtillus in a sub-alpine heath. J Veg Sci, 2013, 24: 569-579

[20]

Granier A. Une nouvelle méthode pur la mesure du flux de sève brute dans le tronc des arbres. Ann for Sci, 1985, 42: 193-200

[21]

Guo Z, Martínez-García E, Chi J, Nilsson MB, Jia X, Peichl M. Divergent apparent temperature sensitivity of forest-floor respiration across a managed boreal forest landscape. Sci Tot Env, 2024, 955 176950

[22]

Hari P, Kulmala M. Station for measuring ecosystem-atmosphere relations (SMEAR II). Boreal Env Res., 2005, 10: 315-322

[23]

Hölttä T, Dominguez M, Salmon Y, Aalto J, Vanhatalo A, Bäck J, Lintunen A. Water relations in silver birch during springtime. How is sap pressurized?. Plant Biol, 2018, 20: 834-847

[24]

Ilvesniemi H, Liu C. Biomass distribution in a young Scots pine stand. Boreal Env Res, 2001, 6: 3-8

[25]

Ilvesniemi H, Levula J, Ojansuu R, Kolari P, Kulmala L, Pumpanen J, Launiainen S, Vesala T, Nikinmaa E. Long-term measurements of the carbon balance of a boreal Scots pine dominated forest ecosystem. Boreal Env Res., 2009, 14: 731-753

[26]

IPCC. Masson-Delmotte V, Zhou B. Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2021, Cambridge, Cambridge University Press

[27]

Jalkanen R, Aalto T, Derome K, Niska K, Ritari A (1995) Needle loss in Lapland. Factors leading to needle loss of Scots pine in 1987 in northern Finland. Final report. Metsäntutkimuslaitoksen tiedonantoja 544, 75 p.

[28]

Jyske T, Manner M, Mäkinen H, Nöjd P, Peltola H, Repo T. The effects of artificial soil frost on cambial activity and xylem formation in Norway spruce. Trees, 2012, 26: 405-419

[29]

Kalliokoski T, Nygren P, Sievänen R. Coarse root architecture of three boreal tree species growing in mixed stands. Silva Fennica, 2008, 42: 189-210

[30]

Kellomäki S, Maajärvi M, Strandman H, Kilpeläinen A, Peltola H. Model computations on the climate change effects on snow cover, soil moisture and soil frost in the boreal conditions over Finland. Silva Fennica, 2010, 44: 213-233

[31]

Kellomäki S, Strandman H, Heinonen T, Asikainen A, Venäläinen A, Peltola H. Temporal and spatial change in diameter growth of boreal Scots pine, Norway spruce, and birch under recent-generation (CMIP5) global climate model projections for the 21st century. Forests, 2018, 9: 118

[32]

Kolari P, Aalto J, Levula J, Kulmala L, Ilvesniemi H, Pumpanen J. Hyytiälä SMEAR II site characteristics2022Zenodo

[33]

Kreyling J, Haei M, Laudon H. Absence of snow cover reduces understory plant cover and alters plant community composition in boreal forests. Oecologia, 2012, 168: 577-587

[34]

Laiho R, Bhuiyan MR, Strakova P, Mäkiranta P, Badorek T, Penttilä T. Modified ingrowth core method plus infrared calibration models for estimating fine root production in peatlands. Plant Soil, 2014, 385: 311-327

[35]

Li J, Pendall E, Dijkstra FA, Nie M. Root effects on the temperature sensitivity of soil respiration depend on climatic condition and ecosystem type. Soil Tillage Res, 2020, 199 104574

[36]

Li Y, Wu X, Huang Y, Li X, Shi F, Zhao S, Yang Y, Tian Y, Wang P, Zhang S, Zhang C, Wang Y, Xu C, Zhao P. Compensation effect of winter snow on larch growth in Northeast China. Clim Change, 2021, 164: 54

[37]

Lintunen A, Kalliokoski T. The effect of tree architecture on conduit diameter and frequency from small distal roots to branch tips in Betula pendula, Picea abies and Pinus sylvestris. Tree Physiol, 2010, 30: 1433-1447

[38]

Lintunen A, Paljakka T, Riikonen A, Lindén L, Lindfors L, Nikinmaa E, Hölttä T. Irreversible diameter change of branches correlates with other methods for estimating frost tolerance of living cells in freeze-thaw experiment: a case study with seven urban tree species in Helsinki. Ann for Sci, 2015, 72: 1089-1098

[39]

Lintunen A, Paljakka T, Jyske T, Peltoniemi M, Sterck F, Von Arx G, Cochard H, Copini P, Caldeira MC, Delzon S, Gebauer R, Grönlund L, Kiorapostolou N, Lechthaler S, Lobo-do-Vale R, Peters RL, Petit G, Prendin AL, Salmon Y, Steppe K, Urban J, Roig Juan S, Robert EMR, Hölttä T. Osmolality and non-structural carbohydrate composition in the secondary phloem of trees across a latitudinal gradient in Europe. Front Plant Sci, 2016, 7: 726

[40]

Lintunen A, Paljakka T, Salmon Y, Dewar R, Riikonen A, Hölttä T. The influence of soil temperature and water content on belowground hydraulic conductance and leaf gas exchange in mature trees of three boreal species. Plant Cell Environ, 2020, 43: 532-547

[41]

Lippu J, Puttonen P. Soil temperature limitations on gas exchange in 1-year-old Pinus sylvestris (L.) seedlings. Scand J for Res, 1991, 6: 73-78

[42]

Liu B, Mou C, Yan G, Xu L, Jiang S, Xing Y, Han S, Yu J, Wang Q. Annual soil CO2 efflux in a cold temperate forest in northeastern China: effects of winter snowpack and artificial nitrogen deposition. Sci Rep, 2016, 6: 18957

[43]

Liu Q, Piao S, Janssens IA, Fu Y, Peng S, Lian X, Ciais P, Myneni RB, Peñuelas J, Wang T. Extension of the growing season increases vegetation exposure to frost. Nat Comm, 2018, 9: 426

[44]

Mayr S, Cochard H, Améglio T, Kikuta SB. Embolism formation during freezing in the wood of Picea abies. Plant Physiol, 2007, 143: 60-67

[45]

Mayr S, Schmid P, Rosner S. Winter embolism and recovery in the conifer shrub Pinus mugo L.. Forests, 2019, 10: 941

[46]

Mellander P-E, Bishop K, Lundmark T. The influence of soil temperature on transpiration: a plot scale manipulation in a young Scots pine stand. For Ecol Manag, 2004, 195: 15-28

[47]

Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD, Rayback SA, Macias-Fauria M, Forbes BC, Speed JDM, Boulanger-Lapointe N, Rixen C, Lévesque E, Schmidt NM, Baittinger C, Trant AJ, Hermanutz L, Collier LS, Dawes MA, Lantz TC, Weijers S, Jørgensen RH, Buchwal A, Buras A, Naito AT, Ravolainen V, Schaepman-Strub G, Wheeler JA, Wipf S, Guay KC, Hik DS, Vellend M. Climate sensitivity of shrub growth across the tundra biome. Nat Clim Change, 2015, 5: 887-891

[48]

Niittynen P, Heikkinen RK, Luoto M. Snow cover is a neglected driver of Arctic biodiversity loss. Nat Clim Change, 2018, 8: 997-1001

[49]

Niu C-Y, Meinzer FC, Hao G-Y. Divergence in strategies for coping with winter embolism among co-occurring temperate tree species: the role of positive xylem pressure, wood type and tree stature. Funct Ecol, 2017, 31: 1550-1560

[50]

Paljakka T, Jyske T, Lintunen A, Aaltonen H, Nikinmaa E, Hölttä T. Gradients and dynamics of inner bark and needle osmotic potentials in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.). Plant Cell Environ, 2017, 40: 2160-2173

[51]

Peng C, Ma Z, Lei X, Zhu Q, Chen H, Wang W, Liu S, Li W, Fang X, Zhou X. A drought-induced pervasive increase in tree mortality across Canada's boreal forests. Nat Clim Change, 2011, 1: 467-471

[52]

Peters JMR, Gauthey A, Lopez R, Carins-Murphy MR, Brodribb TJ, Choat B. Non-invasive imaging reveals convergence in root and stem vulnerability to cavitation across five tree species. J Exp Bot, 2020, 71: 6623-6637

[53]

Pulliainen J, Aurela M, Laurila T, Aalto T, Takala M, Salminen M, Kulmala M, Barr A, Heimann M, Lindroth A, Laaksonen A, Derksen C, Mäkelä A, Markkanen T, Lemmetyinen J, Susiluoto J, Dengel S, Mammarella I, Tuovinen J-P, Vesala T. Early snowmelt significantly enhances boreal springtime carbon uptake. PNAS, 2017, 114: 11081-11086

[54]

Pulliainen J, Luojus K, Derksen C, Mudryk L, Lemmetyinen J, Salminen M, Ikonen J, Takala M, Cohen J, Smolander T, Norberg J. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature, 2020, 581: 294-298

[55]

Pumpanen JS, Kulmala L, Linden AS, Kolari PP, Nikinmaa EH, Hari PKJ. Seasonal dynamics of autotrophic respiration in boreal forest soil estimated by continuous chamber measurements. Bor Environ Res., 2015, 20: 637-650

[56]

R Core Team (2023) R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

[57]

Räisänen J, Eklund J. 21st Century changes in snow climate in Northern Europe: a high-resolution view from ENSEMBLES regional climate models. Clim Dynam, 2012, 38: 2575-2591

[58]

Reinmann AB, Templer PH. Reduced winter snowpack and greater soil frost reduce live root biomass and stimulate radial growth and stem respiration of red maple (Acer rubrum) trees in a mixed-hardwood forest. Ecosystems, 2016, 19: 129-141

[59]

Reinmann AB, Templer PH. Increased soil respiration in response to experimentally reduced snow cover and increased soil freezing in a temperate deciduous forest. Biogeochem, 2018, 140: 359-371

[60]

Reinmann AB, Susser JR, Demaria EMC, Templer PH. Declines in northern forest tree growth following snowpack decline and soil freezing. Glob Change Biol, 2019, 25: 420-430

[61]

Repo T, Leinonen I, Ryyppö A, Finér L. The effect of soil temperature on the bud phenology, chlorophyll fluorescence, carbohydrate content and cold hardiness of Norway spruce seedlings. Physiol Plant, 2004, 121: 93-100

[62]

Repo T, Kalliokoski T, Domisch T, Lehto T, Mannerkoski H, Sutinen S, Finér L. Effects of timing of soil frost thawing on Scots pine. Tree Physiol, 2005, 25: 1053-1062

[63]

Repo T, Sutinen S, Nöjd P, Mäkinen H. Implications of delayed soil frost thawing on the physiology and growth of Norway spruce. Scand J for Res, 2007, 22: 118-127

[64]

Repo T, Lehto T, Finér L. Delayed soil thawing affects root and shoot functioning and growth in Scots pine. Tree Physiol, 2008, 28: 1583-1591

[65]

Repo T, Roitto M, Sutinen S. Does the removal of snowpack and the consequent changes in soil frost affect the physiology of Norway spruce needles?. Environ Exper Bot, 2011, 72: 387-396

[66]

Repo T, Domisch T, Kilpeläinen J, Mäkinen H. Soil frost affects stem diameter growth of Norway spruce with delay. Trees, 2021, 35: 761-767

[67]

Rixen C, Schwoerer C, Wipf S. Winter climate change at different temporal scales in Vaccinium myrtillus, an arctic and alpine dwarf shrub. Polar Res, 2010, 29: 85-94

[68]

Ruosteenoja K, Räisänen J, Venäläinen A, Kämäräinen M, Pirinen P. Terminen kasvukausi lämpenevässä ilmastossa (Thermal growing seasons in a warming climate). Terra, 2016, 128: 3-15

[69]

Saarinen T, Rasmus S, Lundell R, Kauppinen OK, Hänninen H. Photosynthetic and phenological responses of dwarf shrubs to the depth and properties of snow. Oikos, 2016, 125: 3

[70]

Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO. Forest disturbances under climate change. Nat Clim Change, 2017, 7: 395-402

[71]

Sivadasan U, Randriamanana T, Chenhao C, Virjamo V, Nybakken L, Julkunen-Tiitto R. Effect of climate change on bud phenology of young aspen plants (Populus tremula L.). Ecol Evol, 2017, 7: 7998-8007

[72]

Sorensen PO, Templer PH, Finzi AC. Contrasting effects of winter snowpack and soil frost on growing season microbial biomass and enzyme activity in two mixed-hardwood forests. Biogeochem, 2016, 128: 141-154

[73]

Sperry JS, Sullivan JEM. Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol, 1992, 100: 605-613

[74]

Steinweg JM, Fisk MC, McAlexander B, Groffman PM, Hardy JP. Experimental snowpack reduction alters organic matter and net N mineralization potential of soil macroaggregates in a northern hardwood forest. Biol Fertil Soils, 2008, 45: 1-10

[75]

Sutinen R, Hänninen P, Venäläinen A. Effects of mild winter events on soil water content beneath snowpack. Cold Reg Sci Technol, 2008, 51: 56-67

[76]

Tahkokorpi M, Taulavuori K, Laine K, Taulavuori E. After-effects of drought-related winter stress in previous and current year stems of Vaccinium myrtillus L.. Environ Exp Bot, 2007, 61: 85-93

[77]

Tierney GL, Fahey TJ, Groffman PM, Hardy JP, Fitzhugh RD, Driscoll CT. Soil freezing alters fine root dynamics in a northern hardwood forest. Biogeochem, 2001, 56: 175-190

[78]

Tolvanen A. Recovery of the bilberry (Vaccinium myrtillus L.) from artificial spring and summer frost. Plant Ecol, 1997, 130: 35-39

[79]

Venäläinen A, Tuomenvirta H, Lahtinen R, Heikinheimo M. The influence of climate warming on soil frost on snow-free surfaces in Finland. Clim Change, 2001, 50: 111-128

[80]

Wheeler JA, Hoch G, Cortés AJ, Sedlacek J, Wipf S, Rixen C. Increased spring freezing vulnerability for alpine shrubs under early snowmelt. Oecologia, 2014, 175: 219-229

[81]

Wipf S, Stoeckli V, Bebi P. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Clim Change, 2009, 94: 105-121

[82]

Zhao Z, De Frenne P, Peñuelas J, Van Meerbeek K, Fornara DA, Peng Y, Wu Q, Ni X, Wu F, Yue K. Effects of snow cover-induced microclimate warming on soil physicochemical and biotic properties. Geoderma, 2022, 423 115983

Funding

University of Helsinki (including Helsinki University Central Hospital)

RIGHTS & PERMISSIONS

The Author(s)

PDF

353

Accesses

0

Citation

Detail

Sections
Recommended

/