Hot temperature extremes and vapor pressure deficits co-explain changes in the timing of peak photosynthetic activity in the forest belt of northeast China
Yu Zhang , Zhen Yu , Junwei Luan , Yi Wang , Xiaodan Ye , Shirong Liu
Hot temperature extremes and vapor pressure deficits co-explain changes in the timing of peak photosynthetic activity in the forest belt of northeast China
Climate changes in cold-temperate zones are increasingly altering the state of climatic constraints on photosynthesis and growth, leading to adaptive changes in plant phenology and subsequent seasonal carbon assimilation. However, the spatio-temporal patterns of climatic constraints and seasonal carbon assimilation are poorly understood. In this study, the timing of peak photosynthetic activity (DOYpmax) was employed as a proxy for plant adaptive state to climatic constraints on growth to examine the spatio-temporal dynamics of DOYpmax. By using multiple remote sensing metrics, DOYpmax was characterized with changes in the solar-induced chlorophyll fluorescence (SIF) and leaf area index (LAI) from 2000 to 2018. Based on SIF, the DOYpmax was generally around day 190, while based on LAI was about 10 d later. Peak photosynthetic activity of forests occurs earlier compared to other vegetation types. Overall, the advanced DOYpmax were observed based on both SIF and LAI, with annual rates of 0.2 (P = 0.31) and 0.3 (P < 0.05) d, respectively. DOYpmax dynamics were influenced by hot temperature extremes and vapor pressure deficits (VPD) during the early growing season, regardless of sub-zone and different vegetation type. The generalized linear mixed model (GLMM) showed the largest contribution by hot extremes to DOYpmax dynamics accounted for 55.5% (DOYpmax_SIF) and 49.1% (DOYpmax_LAI), respectively, followed by VPD (DOYpmax_SIF: 23.1%; DOYpmax_LAI: 29.5%). These findings highlight the crucial role of climate extremes in shaping seasonal carbon dynamics and regional carbon balance.
Peak photosynthetic activity / Climate change / Hot extremes / Leaf area index / Solar-induced chlorophyll fluorescence
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
Northeast Forestry University
/
| 〈 |
|
〉 |