Soil organic carbon sequestration during secondary forest succession in a Mediterranean area

Monica Zanini , Guido Pellis , Sabina Burrascano , Laura Facioni , Carlo Blasi , Tommaso Chiti

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1)

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) DOI: 10.1007/s11676-025-01871-6
Original Paper

Soil organic carbon sequestration during secondary forest succession in a Mediterranean area

Author information +
History +
PDF

Abstract

Over the last century, the Mediterranean basin has been widely affected by the abandonment of farming activities, leading to a natural succession towards forested ecosystems. This process is resulting in a carbon (C) stock increase at an ecosystem level, often assessed through the measurement of aboveground biomass, while the contribution of soil organic carbon (SOC) remains unclear. We investigated C changes caused by secondary succession on previously grazed areas in central Italy, specifically focusing on the SOC pool. The natural succession is described through a chronosequence approach over four successional stages: pastures, shrublands, young and mature forests. Eight replicates per stage were studied, and C stock was estimated in the mineral soil down to a 30-cm depth, and in all other ecosystem C pools: aboveground and belowground biomass, deadwood and litter. In the mature forests, SOC stock was significantly higher (p < 0.05) than in pastures by 40 ± 8 Mg ha–1, corresponding to 28% of the total ecosystem C stock gain. The same trend was observed for aboveground biomass, the pool that increased the most (62 ± 23 Mg ha–1), with a 43% contribution to total ecosystem gain. Our results point to a substantial contribution of SOC to overall C stock during secondary succession in Mediterranean ecosystems.

Keywords

Climate change mitigation / Pastures / Forests / Secondary succession / Soil organic carbon

Cite this article

Download citation ▾
Monica Zanini, Guido Pellis, Sabina Burrascano, Laura Facioni, Carlo Blasi, Tommaso Chiti. Soil organic carbon sequestration during secondary forest succession in a Mediterranean area. Journal of Forestry Research, 2025, 36(1): DOI:10.1007/s11676-025-01871-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlbertiG, PeressottiA, PiussiP, ZerbiG. Forest ecosystem carbon accumulation during a secondary succession in the Eastern Prealps of Italy. Forestry (Lond), 2008, 81(1): 1-11

[2]

AlbertiG, LeronniV, PiazziM, PetrellaF, MairotaP, PeressottiA, PiussiP, ValentiniR, GristinaL, MantiaTL, NovaraA, RühlJ. Impact of woody encroachment on soil organic carbon and nitrogen in abandoned agricultural lands along a rainfall gradient in Italy. Reg Environ Change, 2011, 11(4): 917-924

[3]

Archer SR, Andersen EM, Predick KI, Schwinning S, Steidl RJ, Woods SR (2017) Woody plant encroachment: causes and consequences. In: Rangeland systems. Springer International Publishing, pp 25–84. https://doi.org/10.1007/978-3-319-46709-2_2

[4]

BadalamentiE, BattipagliaG, GristinaL, NovaraA, RühlJ, SalaG, SapienzaL, ValentiniR, MantiaTL. Carbon stock increases up to old growth forest along a secondary succession in Mediterranean island ecosystems. PLoS ONE, 2019, 14(7): e0220194

[5]

BellSM, TerrerC, BarriocanalC, JacksonRB, Rosell-MeléA. Soil organic carbon accumulation rates on Mediterranean abandoned agricultural lands. Sci Total Environ, 2021, 759 143535

[6]

BondWJ, MidgleyGF. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob Change Biol, 2000, 6(8): 865-869

[7]

BossioDA, Cook-PattonSC, EllisPW, FargioneJ, SandermanJ, SmithP, WoodS, ZomerRJ, von UngerM, EmmerIM, GriscomBW. The role of soil carbon in natural climate solutions. Nat Sustain, 2020, 3: 391-398

[8]

Cañellas I, Sánchez-González M, Bogino SM, Adame P, Herrero C, Roig S, Tomé M, Paulo JA, Bravo F (2008) Silviculture and carbon sequestration in Mediterranean oak forests. In: Managing forest ecosystems: the challenge of climate change. Springer Netherlands, pp 317–338. https://doi.org/10.1007/978-1-4020-8343-3_18

[9]

ChitiT, BlasiE, PellisG, PeruginiL, ChiriacòMV, ValentiniR. Soil organic carbon pool’s contribution to climate change mitigation on marginal land of a Mediterranean montane area in Italy. J Environ Manage, 2018, 218: 593-601

[10]

Chiti T, Pellis G, Manso S, Canaveira,P, Perugini L, De Angelis P, Neves R, Papale D, Paulino J, Pereira T, Pina A, Pita G, Santos E, Domingos T, Scarascia-Mugnozza G (2018b) Soil Carbon Data on Cropland and Grassland in the Mediterranean Region. Final Report for Action A5 of Project MediNet. http://www.lifemedinet.com/

[11]

DanjonF, StokesA, BakkerMBeeckmanT. Root systems of woody plants. Plant Roots, 2013, Boca Raton, CRC Press

[12]

Di PietroR, AzzellaM, FacioniL. The forest vegetation of the tolfa-ceriti mountains (northern Latium-central Italy). Hacquetia, 2010, 9(1): 91-150

[13]

D’OdoricoP, OkinGS, BestelmeyerBT. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology, 2012, 5(5): 520-530

[14]

Facioni L, Burrascano S, Chiti T, Giarrizzo E, Zanini M, Blasi C (2019) Shifts in plant diversity and carbon stocks along the succession towards submediterranean Quercus cerris L. woods in Central Italy. Phytocoenologia pp 393–408. https://doi.org/10.1127/phyto/2019/0299

[15]

FAO. Global forest resources assessment 2020-key findings. Rome, 2020

[16]

FAO and Plan Bleu (2018) State of Mediterranean Forests 2018. Food and Agriculture Organization of the United Nations, Rome and Plan Bleu, Marseille

[17]

FinoE, BlasiE, PeruginiL, PellisG, ValentiniR, ChitiT. Is soil contributing to climate change mitigation during woody encroachment? A case study on the Italian Alps. Forests, 2020, 11(8): 887

[18]

FuchsR, HeroldM, VerburgPH, CleversJGPW. A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe. Biogeosciences, 2013, 10(3): 1543-1559

[19]

Global Wood Density Database (2015) Dryad. https://datadryad.org

[20]

González DíazJA, CelayaR, GarcíaFF, OsoroK, GarcíaRR. Dynamics of rural landscapes in marginal areas of northern Spain: past, present, and future. Land Degrad Dev, 2019, 30(2): 141-150

[21]

González-RoglichM, SwensonJJ, JobbágyEG, JacksonRB. Shifting carbon pools along a plant cover gradient in woody encroached savannas of central Argentina. For Ecol Manag, 2014, 331: 71-78

[22]

GuidiC, MagidJ, RodeghieroM, GianelleD, VesterdalL. Effects of forest expansion on mountain grassland: changes within soil organic carbon fractions. Plant Soil, 2014, 385(1): 373-387

[23]

GuidiC, VesterdalL, GianelleD, RodeghieroM. Changes in soil organic carbon and nitrogen following forest expansion on grassland in the Southern Alps. For Ecol Manag, 2014, 328: 103-116

[24]

GuoLB, GiffordRM. Soil carbon stocks and land use change: a meta analysis. Glob Change Biol, 2002, 8(4): 345-360

[25]

Herrero C, Turrión MB, Pando V, Bravo F (2016) Carbon content of forest floor and mineral soil in Mediterranean Pinus spp. and Oak stands in acid soils in Northern Spain. For Syst 25(2): e065. https://doi.org/10.5424/fs/2016252-09149

[26]

HiltbrunnerD, ZimmermannS, HagedornF. Afforestation with Norway spruce on a subalpine pasture alters carbon dynamics but only moderately affects soil carbon storage. Biogeochemistry, 2013, 115(1): 251-266

[27]

HoughtonRA, NassikasAA. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob Biogeochem Cycles, 2017, 31(3): 456-472

[28]

INFC (2006) Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio. In: Tabacchi G, Scrinzi G, Tosi T, Floris A, Paletto A, Di Cosmo L, Colle G (eds) Procedure di posizionamento e di rilievo degli attributi di terza fase con istruzioni per l’impiego degli applicativi NAV3 e RAS3. MiPAF -Ispettorato Generale del Corpo Forestale dello Stato, CRA-ISAFA, Trento

[29]

IPCC (2006) Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Published: IGES, Japan. Volume 4 AFOLU, Chapter 2 P. 2.29. ISRIC/FAO (2002) Procedures for soil analysis, 6th edn, Tech. Pa. 9, ISRIC, Wageningen

[30]

IUSS Working Group WRB (2015) World reference base for soil resources 2014. In: International soil classification system for naming soils and creating legends for soil maps. World soil resources reports, vol 106 Rome

[31]

JacksonRB, BannerJL, JobbágyEG, PockmanWT, WallDH. Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 2002, 418(6898): 623-626

[32]

JanischJE, HarmonME. Successional changes in live and dead wood carbon stores: implications for net ecosystem productivity. Tree Physiol, 2002, 22(2–3): 77-89

[33]

JobbágyEG, JacksonRB. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl, 2000, 10(2): 423-436

[34]

JohnsonCM, ZarinDJ, JohnsonAH. Post-disturbance aboveground biomass accumulation in global secondary forests. Ecology, 2000, 81(5): 1395-1401

[35]

LasantaT, ArnáezJ, PascualN, Ruiz-FlañoP, ErreaMP, Lana-RenaultN. Space–time process and drivers of land abandonment in Europe. CATENA, 2017, 149: 810-823

[36]

MacDonaldD, CrabtreeJR, WiesingerG, DaxT, StamouN, FleuryP, Gutierrez LazpitaJ, GibonA. Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J Environ Manag, 2000, 59(1): 47-69

[37]

MeyfroidtP, RudelTK, LambinEF. Forest transitions, trade, and the global displacement of land use. Proc Natl Acad Sci USA, 2010, 107(49): 20917-20922

[38]

MIPAAF (2015) Osservatorio Nazionale Pedologico e per la Qualità del Suolo. Metodi di analisi chimica del suolo (in Italian) Ministero delle Politiche Agricole Alimentari e Forestali, Violante P. (coord.), Franco Angeli Edit., Roma

[39]

MokanyK, RaisonRJ, ProkushkinAS. Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol, 2006, 12(1): 84-96

[40]

Nadal-RomeroE, CammeraatE, Pérez-CardielE, LasantaT. How do soil organic carbon stocks change after cropland abandonment in Mediterranean humid mountain areas?. Sci Total Environ, 2016, 566–567: 741-752

[41]

Napoli R, Paolanti M, Di Ferdinando S (2019) Atlante dei Suoli del Lazio. (in Italian) ARSIAL Regione Lazio. ISBN 978-88-904841-2-4

[42]

National Inventory Report (2024) Italian Greenhouse Gas Inventory 1990–2024. Institute for Environmental Protection and Research (ISPRA), Rome. p 557

[43]

NovaraA, La MantiaT, RühlJ, BadaluccoL, KuzyakovY, GristinaL, LaudicinaVA. Dynamics of soil organic carbon pools after agricultural abandonment. Geoderma, 2014, 235: 191-198

[44]

PanagosP, BorrelliP, PoesenJ, BallabioC, LugatoE, MeusburgerK, MontanarellaL, AlewellC. The new assessment of soil loss by water erosion in Europe. Environ Sci Policy, 2015, 54: 438-447

[45]

Pasalodos-TatoM, Almazán RiballoE, MonteroG, Diaz-BalteiroL. Evaluation of tree biomass carbon stock changes in Andalusian forests: comparison of two methodologies. Carbon Manag, 2017, 8(2): 125-134

[46]

PaulKI, PolglasePJ, NyakuengamaJG, KhannaPK. Change in soil carbon following afforestation. For Ecol Manag, 2002, 168(1–3): 241-257

[47]

PellisG, ChitiT, ReyA, Curiel YusteJ, TrottaC, PapaleD. The ecosystem carbon sink implications of mountain forest expansion into abandoned grazing land: the role of subsoil and climatic factors. Sci Total Environ, 2019, 672: 106-120

[48]

PinnoBD, WilsonSD. Ecosystem carbon changes with woody encroachment of grassland in the northern Great Plains. Écoscience, 2011, 18(2): 157-163

[49]

PoeplauC, DonA, VesterdalL, LeifeldJ, Van WesemaelB, SchumacherJ, GensiorA. Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach. Glob Change Biol, 2011, 17(7): 2415-2427

[50]

PoeplauC, VosC, DonA. Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content. Soil, 2017, 3(1): 61-66

[51]

QuideauSA, ChadwickOA, BenesiA, GrahamRC, AndersonMA. A direct link between forest vegetation type and soil organic matter composition. Geoderma, 2001, 104(1–2): 41-60

[52]

RischAC, JurgensenMF, Page-DumroeseDS, WildiO, SchützM. Long-term development of above- and below-ground carbon stocks following land-use change in subalpine ecosystems of the Swiss National Park. Can J for Res, 2008, 38(6): 1590-1602

[53]

RStudio Team (2015) RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/

[54]

SalaOE, MaestreFT. Grass–woodland transitions: determinants and consequences for ecosystem functioning and provisioning of services. J Ecol, 2014, 102(6): 1357-1362

[55]

ScharlemannJP, TannerEV, HiedererR, KaposV. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag, 2014, 5(1): 81-91

[56]

SerpaD, NunesJP, SantosJ, SampaioE, JacintoR, VeigaS, LimaJC, MoreiraM, Corte-RealJ, KeizerJJ, AbrantesN. Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Sci Total Environ, 2015, 538: 64-77

[57]

SeguraC, NavarroFB, Noelia JiménezM, Fernández-OndoñoE. Implications of afforestation vs secondary succession for soil properties under a semiarid climate. Sci Total Environ, 2020, 704: 135393

[58]

SitziaT, SemenzatoP, TrentanoviG. Natural reforestation is changing spatial patterns of rural mountain and hill landscapes: a global overview. For Ecol Manag, 2010, 259(8): 1354-1362

[59]

SollinsP, HomannP, CaldwellBA. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 1996, 74(1–2): 65-105

[60]

SpeedJDM, MartinsenV, MysterudA, MulderJ, HolandØ, AustrheimG. Long-term increase in aboveground carbon stocks following exclusion of grazers and forest establishment in an alpine ecosystem. Ecosystems, 2014, 17(7): 1138-1150

[61]

SpeedJDM, MartinsenV, HesterAJ, HolandMJ, MysterudA, AustrheimG. Continuous and discontinuous variation in ecosystem carbon stocks with elevation across a treeline ecotone. Biogeosciences, 2015, 12(5): 1615-1627

[62]

Tabacchi G, Di Cosmo L, Gasparini P, Morelli S (2011) Stima del volume e della fitomassa delle principali specie forestali italiane. Tavole di cubatura ed equazioni di previsione. (in Italian) Consiglio per la Ricerca e la Sperimentazione in agricoltura, Unità di Ricerca per il Monitoraggio la Pianificazione Forestale. Trento. p 412

[63]

ThuilleA, SchulzeED. Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Glob Change Biol, 2006, 12(2): 325-342

[64]

WalkerLR, WardleDA, BardgettRD, ClarksonBD. The use of chronosequences in studies of ecological succession and soil development. J Ecol, 2010, 98(4): 725-736

[65]

WeiXR, ShaoMG, GaleW, LiLH. Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Sci Rep, 2014, 4: 4062

[66]

WellockML, RafiqueR, LaPerleCM, PeichlM, KielyG. Changes in ecosystem carbon stocks in a grassland ash (Fraxinus excelsior) afforestation chronosequence in Ireland. J Plant Ecol, 2014, 7(5): 429-438

[67]

ZimmermannP, TasserE, LeitingerG, TappeinerU. Effects of land-use and land-cover pattern on landscape-scale biodiversity in the European Alps. Agric Ecosyst Environ, 2010, 139(1–2): 13-22

RIGHTS & PERMISSIONS

Northeast Forestry University

AI Summary AI Mindmap
PDF

304

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/