Soil organic carbon sequestration during secondary forest succession in a Mediterranean area

Monica Zanini , Guido Pellis , Sabina Burrascano , Laura Facioni , Carlo Blasi , Tommaso Chiti

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 71

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) :71 DOI: 10.1007/s11676-025-01871-6
Original Paper
research-article

Soil organic carbon sequestration during secondary forest succession in a Mediterranean area

Author information +
History +
PDF

Abstract

Over the last century, the Mediterranean basin has been widely affected by the abandonment of farming activities, leading to a natural succession towards forested ecosystems. This process is resulting in a carbon (C) stock increase at an ecosystem level, often assessed through the measurement of aboveground biomass, while the contribution of soil organic carbon (SOC) remains unclear. We investigated C changes caused by secondary succession on previously grazed areas in central Italy, specifically focusing on the SOC pool. The natural succession is described through a chronosequence approach over four successional stages: pastures, shrublands, young and mature forests. Eight replicates per stage were studied, and C stock was estimated in the mineral soil down to a 30-cm depth, and in all other ecosystem C pools: aboveground and belowground biomass, deadwood and litter. In the mature forests, SOC stock was significantly higher (p < 0.05) than in pastures by 40 ± 8 Mg ha–1, corresponding to 28% of the total ecosystem C stock gain. The same trend was observed for aboveground biomass, the pool that increased the most (62 ± 23 Mg ha–1), with a 43% contribution to total ecosystem gain. Our results point to a substantial contribution of SOC to overall C stock during secondary succession in Mediterranean ecosystems.

Keywords

Climate change mitigation / Pastures / Forests / Secondary succession / Soil organic carbon

Cite this article

Download citation ▾
Monica Zanini, Guido Pellis, Sabina Burrascano, Laura Facioni, Carlo Blasi, Tommaso Chiti. Soil organic carbon sequestration during secondary forest succession in a Mediterranean area. Journal of Forestry Research, 2025, 36(1): 71 DOI:10.1007/s11676-025-01871-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alberti G, Peressotti A, Piussi P, Zerbi G. Forest ecosystem carbon accumulation during a secondary succession in the Eastern Prealps of Italy. Forestry (Lond), 2008, 81(1): 1-11

[2]

Alberti G, Leronni V, Piazzi M, Petrella F, Mairota P, Peressotti A, Piussi P, Valentini R, Gristina L, Mantia TL, Novara A, Rühl J. Impact of woody encroachment on soil organic carbon and nitrogen in abandoned agricultural lands along a rainfall gradient in Italy. Reg Environ Change, 2011, 11(4): 917-924

[3]

Archer SR, Andersen EM, Predick KI, Schwinning S, Steidl RJ, Woods SR (2017) Woody plant encroachment: causes and consequences. In: Rangeland systems. Springer International Publishing, pp 25–84. https://doi.org/10.1007/978-3-319-46709-2_2

[4]

Badalamenti E, Battipaglia G, Gristina L, Novara A, Rühl J, Sala G, Sapienza L, Valentini R, Mantia TL. Carbon stock increases up to old growth forest along a secondary succession in Mediterranean island ecosystems. PLoS ONE, 2019, 14(7 e0220194

[5]

Bell SM, Terrer C, Barriocanal C, Jackson RB, Rosell-Melé A. Soil organic carbon accumulation rates on Mediterranean abandoned agricultural lands. Sci Total Environ, 2021, 759 143535

[6]

Bond WJ, Midgley GF. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob Change Biol, 2000, 6(8): 865-869

[7]

Bossio DA, Cook-Patton SC, Ellis PW, Fargione J, Sanderman J, Smith P, Wood S, Zomer RJ, von Unger M, Emmer IM, Griscom BW. The role of soil carbon in natural climate solutions. Nat Sustain, 2020, 3: 391-398

[8]

Cañellas I, Sánchez-González M, Bogino SM, Adame P, Herrero C, Roig S, Tomé M, Paulo JA, Bravo F (2008) Silviculture and carbon sequestration in Mediterranean oak forests. In: Managing forest ecosystems: the challenge of climate change. Springer Netherlands, pp 317–338. https://doi.org/10.1007/978-1-4020-8343-3_18

[9]

Chiti T, Blasi E, Pellis G, Perugini L, Chiriacò MV, Valentini R. Soil organic carbon pool’s contribution to climate change mitigation on marginal land of a Mediterranean montane area in Italy. J Environ Manage, 2018, 218: 593-601

[10]

Chiti T, Pellis G, Manso S, Canaveira,P, Perugini L, De Angelis P, Neves R, Papale D, Paulino J, Pereira T, Pina A, Pita G, Santos E, Domingos T, Scarascia-Mugnozza G (2018b) Soil Carbon Data on Cropland and Grassland in the Mediterranean Region. Final Report for Action A5 of Project MediNet. http://www.lifemedinet.com/

[11]

Danjon F, Stokes A, Bakker M. Beeckman T. Root systems of woody plants. Plant Roots, 2013, Boca Raton, CRC Press

[12]

Di Pietro R, Azzella M, Facioni L. The forest vegetation of the tolfa-ceriti mountains (northern Latium-central Italy). Hacquetia, 2010, 9(1): 91-150

[13]

D’Odorico P, Okin GS, Bestelmeyer BT. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology, 2012, 5(5): 520-530

[14]

Facioni L, Burrascano S, Chiti T, Giarrizzo E, Zanini M, Blasi C (2019) Shifts in plant diversity and carbon stocks along the succession towards submediterranean Quercus cerris L. woods in Central Italy. Phytocoenologia pp 393–408. https://doi.org/10.1127/phyto/2019/0299

[15]

FAO. Global forest resources assessment 2020-key findings. Rome, 2020

[16]

FAO and Plan Bleu (2018) State of Mediterranean Forests 2018. Food and Agriculture Organization of the United Nations, Rome and Plan Bleu, Marseille

[17]

Fino E, Blasi E, Perugini L, Pellis G, Valentini R, Chiti T. Is soil contributing to climate change mitigation during woody encroachment? A case study on the Italian Alps. Forests, 2020, 11(8): 887

[18]

Fuchs R, Herold M, Verburg PH, Clevers JGPW. A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe. Biogeosciences, 2013, 10(31543-1559

[19]

Global Wood Density Database (2015) Dryad. https://datadryad.org

[20]

González Díaz JA, Celaya R, García FF, Osoro K, García RR. Dynamics of rural landscapes in marginal areas of northern Spain: past, present, and future. Land Degrad Dev, 2019, 30(2): 141-150

[21]

González-Roglich M, Swenson JJ, Jobbágy EG, Jackson RB. Shifting carbon pools along a plant cover gradient in woody encroached savannas of central Argentina. For Ecol Manag, 2014, 331: 71-78

[22]

Guidi C, Magid J, Rodeghiero M, Gianelle D, Vesterdal L. Effects of forest expansion on mountain grassland: changes within soil organic carbon fractions. Plant Soil, 2014, 385(1): 373-387

[23]

Guidi C, Vesterdal L, Gianelle D, Rodeghiero M. Changes in soil organic carbon and nitrogen following forest expansion on grassland in the Southern Alps. For Ecol Manag, 2014, 328: 103-116

[24]

Guo LB, Gifford RM. Soil carbon stocks and land use change: a meta analysis. Glob Change Biol, 2002, 8(4): 345-360

[25]

Herrero C, Turrión MB, Pando V, Bravo F (2016) Carbon content of forest floor and mineral soil in Mediterranean Pinus spp. and Oak stands in acid soils in Northern Spain. For Syst 25(2): e065. https://doi.org/10.5424/fs/2016252-09149

[26]

Hiltbrunner D, Zimmermann S, Hagedorn F. Afforestation with Norway spruce on a subalpine pasture alters carbon dynamics but only moderately affects soil carbon storage. Biogeochemistry, 2013, 115(1): 251-266

[27]

Houghton RA, Nassikas AA. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob Biogeochem Cycles, 2017, 31(3): 456-472

[28]

INFC (2006) Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio. In: Tabacchi G, Scrinzi G, Tosi T, Floris A, Paletto A, Di Cosmo L, Colle G (eds) Procedure di posizionamento e di rilievo degli attributi di terza fase con istruzioni per l’impiego degli applicativi NAV3 e RAS3. MiPAF -Ispettorato Generale del Corpo Forestale dello Stato, CRA-ISAFA, Trento

[29]

IPCC (2006) Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Published: IGES, Japan. Volume 4 AFOLU, Chapter 2 P. 2.29. ISRIC/FAO (2002) Procedures for soil analysis, 6th edn, Tech. Pa. 9, ISRIC, Wageningen

[30]

IUSS Working Group WRB (2015) World reference base for soil resources 2014. In: International soil classification system for naming soils and creating legends for soil maps. World soil resources reports, vol 106 Rome

[31]

Jackson RB, Banner JL, Jobbágy EG, Pockman WT, Wall DH. Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 2002, 418(6898): 623-626

[32]

Janisch JE, Harmon ME. Successional changes in live and dead wood carbon stores: implications for net ecosystem productivity. Tree Physiol, 2002, 22(2–3): 77-89

[33]

Jobbágy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl, 2000, 10(2): 423-436

[34]

Johnson CM, Zarin DJ, Johnson AH. Post-disturbance aboveground biomass accumulation in global secondary forests. Ecology, 2000, 81(5): 1395-1401

[35]

Lasanta T, Arnáez J, Pascual N, Ruiz-Flaño P, Errea MP, Lana-Renault N. Space–time process and drivers of land abandonment in Europe. CATENA, 2017, 149: 810-823

[36]

MacDonald D, Crabtree JR, Wiesinger G, Dax T, Stamou N, Fleury P, Gutierrez Lazpita J, Gibon A. Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J Environ Manag, 2000, 59(1): 47-69

[37]

Meyfroidt P, Rudel TK, Lambin EF. Forest transitions, trade, and the global displacement of land use. Proc Natl Acad Sci USA, 2010, 107(49): 20917-20922

[38]

MIPAAF (2015) Osservatorio Nazionale Pedologico e per la Qualità del Suolo. Metodi di analisi chimica del suolo (in Italian) Ministero delle Politiche Agricole Alimentari e Forestali, Violante P. (coord.), Franco Angeli Edit., Roma

[39]

Mokany K, Raison RJ, Prokushkin AS. Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol, 2006, 12(1): 84-96

[40]

Nadal-Romero E, Cammeraat E, Pérez-Cardiel E, Lasanta T. How do soil organic carbon stocks change after cropland abandonment in Mediterranean humid mountain areas?. Sci Total Environ, 2016, 566–567: 741-752

[41]

Napoli R, Paolanti M, Di Ferdinando S (2019) Atlante dei Suoli del Lazio. (in Italian) ARSIAL Regione Lazio. ISBN 978-88-904841-2-4

[42]

National Inventory Report (2024) Italian Greenhouse Gas Inventory 1990–2024. Institute for Environmental Protection and Research (ISPRA), Rome. p 557

[43]

Novara A, La Mantia T, Rühl J, Badalucco L, Kuzyakov Y, Gristina L, Laudicina VA. Dynamics of soil organic carbon pools after agricultural abandonment. Geoderma, 2014, 235: 191-198

[44]

Panagos P, Borrelli P, Poesen J, Ballabio C, Lugato E, Meusburger K, Montanarella L, Alewell C. The new assessment of soil loss by water erosion in Europe. Environ Sci Policy, 2015, 54: 438-447

[45]

Pasalodos-Tato M, Almazán Riballo E, Montero G, Diaz-Balteiro L. Evaluation of tree biomass carbon stock changes in Andalusian forests: comparison of two methodologies. Carbon Manag, 2017, 8(2): 125-134

[46]

Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK. Change in soil carbon following afforestation. For Ecol Manag, 2002, 168(1–3): 241-257

[47]

Pellis G, Chiti T, Rey A, Curiel Yuste J, Trotta C, Papale D. The ecosystem carbon sink implications of mountain forest expansion into abandoned grazing land: the role of subsoil and climatic factors. Sci Total Environ, 2019, 672: 106-120

[48]

Pinno BD, Wilson SD. Ecosystem carbon changes with woody encroachment of grassland in the northern Great Plains. Écoscience, 2011, 18(2): 157-163

[49]

Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael B, Schumacher J, Gensior A. Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach. Glob Change Biol, 2011, 17(7): 2415-2427

[50]

Poeplau C, Vos C, Don A. Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content. Soil, 2017, 3(1): 61-66

[51]

Quideau SA, Chadwick OA, Benesi A, Graham RC, Anderson MA. A direct link between forest vegetation type and soil organic matter composition. Geoderma, 2001, 104(1–2): 41-60

[52]

Risch AC, Jurgensen MF, Page-Dumroese DS, Wildi O, Schütz M. Long-term development of above- and below-ground carbon stocks following land-use change in subalpine ecosystems of the Swiss National Park. Can J for Res, 2008, 38(6): 1590-1602

[53]

RStudio Team (2015) RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/

[54]

Sala OE, Maestre FT. Grass–woodland transitions: determinants and consequences for ecosystem functioning and provisioning of services. J Ecol, 2014, 102(6): 1357-1362

[55]

Scharlemann JP, Tanner EV, Hiederer R, Kapos V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag, 2014, 5(1): 81-91

[56]

Serpa D, Nunes JP, Santos J, Sampaio E, Jacinto R, Veiga S, Lima JC, Moreira M, Corte-Real J, Keizer JJ, Abrantes N. Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Sci Total Environ, 2015, 538: 64-77

[57]

Segura C, Navarro FB, Noelia Jiménez M, Fernández-Ondoño E. Implications of afforestation vs secondary succession for soil properties under a semiarid climate. Sci Total Environ, 2020, 704: 135393

[58]

Sitzia T, Semenzato P, Trentanovi G. Natural reforestation is changing spatial patterns of rural mountain and hill landscapes: a global overview. For Ecol Manag, 2010, 259(8): 1354-1362

[59]

Sollins P, Homann P, Caldwell BA. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 1996, 74(1–265-105

[60]

Speed JDM, Martinsen V, Mysterud A, Mulder J, Holand Ø, Austrheim G. Long-term increase in aboveground carbon stocks following exclusion of grazers and forest establishment in an alpine ecosystem. Ecosystems, 2014, 17(7): 1138-1150

[61]

Speed JDM, Martinsen V, Hester AJ, Holand MJ, Mysterud A, Austrheim G. Continuous and discontinuous variation in ecosystem carbon stocks with elevation across a treeline ecotone. Biogeosciences, 2015, 12(5): 1615-1627

[62]

Tabacchi G, Di Cosmo L, Gasparini P, Morelli S (2011) Stima del volume e della fitomassa delle principali specie forestali italiane. Tavole di cubatura ed equazioni di previsione. (in Italian) Consiglio per la Ricerca e la Sperimentazione in agricoltura, Unità di Ricerca per il Monitoraggio la Pianificazione Forestale. Trento. p 412

[63]

Thuille A, Schulze ED. Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Glob Change Biol, 2006, 12(2): 325-342

[64]

Walker LR, Wardle DA, Bardgett RD, Clarkson BD. The use of chronosequences in studies of ecological succession and soil development. J Ecol, 2010, 98(4): 725-736

[65]

Wei XR, Shao MG, Gale W, Li LH. Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Sci Rep, 2014, 4: 4062

[66]

Wellock ML, Rafique R, LaPerle CM, Peichl M, Kiely G. Changes in ecosystem carbon stocks in a grassland ash (Fraxinus excelsior) afforestation chronosequence in Ireland. J Plant Ecol, 2014, 7(5): 429-438

[67]

Zimmermann P, Tasser E, Leitinger G, Tappeiner U. Effects of land-use and land-cover pattern on landscape-scale biodiversity in the European Alps. Agric Ecosyst Environ, 2010, 139(1–213-22

RIGHTS & PERMISSIONS

Northeast Forestry University

PDF

397

Accesses

0

Citation

Detail

Sections
Recommended

/