Assembly and phylogenetic analysis of the complete mitochondrial genome of a widely planted hybrid eucalypt (Eucalyptus urophylla ×  E. grandis)

Chenhe Li , Jing Wang , Chunjie Fan , Xiangyang Kang , Jun Yang

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1)

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) DOI: 10.1007/s11676-025-01869-0
Original Paper

Assembly and phylogenetic analysis of the complete mitochondrial genome of a widely planted hybrid eucalypt (Eucalyptus urophylla ×  E. grandis)

Author information +
History +
PDF

Abstract

Eucalyptus urophylla ×  E. grandis is a major hybrid species of timber plantations. However, our understanding of Eucalyptus mitochondrial genome, especially within the Myrtaceae family, is limited. In this study, we employed hybrid sequencing combining the Illumina and Oxford Nanopore sequencing to assemble and annotate the mitogenome (mtDNA) of E. urophylla ×  E. grandis. Our results reveal a structure characterized by one circular molecule, with a cumulative length of 483,907 base pairs (bp) and a GC content of 44.96%. The circular molecule collectively harbored 59 annotated genes. Among these, 38 were unique protein-coding genes (PCGs), accompanied by 18 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. Our study also examined repetitive sequences, RNA editing sites, and intracellular sequence transfers within the mtDNA. Furthermore, we conducted a phylogenetic analysis between E. urophylla ×  E. grandis and 30 closely related species based on genetic affinities. The outcomes furnish a high-quality organelle genome for E. urophylla ×  E. grandis, thereby explaining basic insights into organelle genome evolution and phylogenetic relationships.

Keywords

Eucalyptus urophylla ×  E. grandis / Myrtaceae / Mitochondrial genome / Repetitive sequences / RNA editing / Phylogenetic relationship

Cite this article

Download citation ▾
Chenhe Li, Jing Wang, Chunjie Fan, Xiangyang Kang, Jun Yang. Assembly and phylogenetic analysis of the complete mitochondrial genome of a widely planted hybrid eucalypt (Eucalyptus urophylla ×  E. grandis). Journal of Forestry Research, 2025, 36(1): DOI:10.1007/s11676-025-01869-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlversonAJ, WeiXX, RiceDW, SternDB, BarryK, PalmerJD. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Biol Evol, 2010, 27(6): 1436-1448

[2]

BeierS, ThielT, MünchT, ScholzU, MascherM. MISA-web: a web server for microsatellite prediction. Bioinformatics, 2017, 33(16): 2583-2585

[3]

BensonG. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res, 1999, 27(2): 573-580

[4]

BiCW, PatersonAH, WangXL, XuYQ, WuDY, QuYS, JiangAN, YeQL, YeN. Analysis of the complete mitochondrial genome sequence of the diploid cotton Gossypium raimondii by comparative genomics approaches. Biomed Res Int, 2016, 2016: 5040598

[5]

BiCW, LuN, XuYQ, HeCP, LuZH. Characterization and analysis of the mitochondrial genome of common bean (Phaseolus vulgaris) by comparative genomic approaches. Int J Mol Sci, 2020, 21(11): 3778

[6]

Brenner WG, Mader M, Müller NA, Hoenicka H, Schroeder H, Zorn I, Fladung M, Kersten B (2019) High level of conservation of mitochondrial RNA editing sites among four Populus species. G3 9(3): 709–717. https://doi.org/10.1534/g3.118.200763

[7]

ChangSX, YangTT, DuTQ, HuangYJ, ChenJM, YanJY, HeJB, GuanRZ. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica. BMC Genomics, 2011, 12: 497

[8]

ChawSM, ShihAC, WangD, WuYW, LiuSM, ChouTY. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol Biol Evol, 2008, 25(3): 603-615

[9]

ChenY, YeWC, ZhangYD, XuYS. High speed BLASTN: an accelerated MegaBLAST search tool. Nucleic Acids Res, 2015, 43(16): 7762-7768

[10]

DongSS, ZhaoCX, ChenF, LiuYH, ZhangSZ, WuH, ZhangLS, LiuY. The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination. BMC Genomics, 2018, 19(1): 614

[11]

EderaAA, SmallI, MiloneDH, Virginia Sanchez-PuertaM. Deepred-Mt: Deep representation learning for predicting C-to-U RNA editing in plant mitochondria. Comput Biol Med, 2021, 136: 104682

[12]

EguiluzM, RodriguesNF, GuzmanF, YuyamaP, MargisR. The chloroplast genome sequence from Eugenia uniflora, a Myrtaceae from Neotropics. Plant Syst Evol, 2017, 303(9): 1199-1212

[13]

GanSM, LiM, LiF, WuKM, WuJY, BaiJ. Genetic analysis of growth and susceptibility to bacterial wilt (Ralstonia solanacearum) in Eucalyptus by interspecific factorial crossing. Silvae Genet, 2004, 53: 254-258

[14]

GloverKE, SpencerDF, GrayMW. Identification and structural characterization of nucleus-encoded transfer RNAs imported into wheat mitochondria. J Biol Chem, 2001, 276(1): 639-648

[15]

GrattapagliaD, VaillancourtRE, ShepherdM, ThummaBR, FoleyW, KülheimC, PottsBM, MyburgAA. Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet Genomes, 2012, 8(3): 463-508

[16]

GualbertoJM, NewtonKJ. Plant mitochondrial genomes: dynamics and mechanisms of mutation. Annu Rev Plant Biol, 2017, 68: 225-252

[17]

Hao J, Liang YY, Su YJ, Wang T (2022) The complete mitochondrial genome of Ophioglossum vulgatum L. is with highly repetitive sequences: intergenomic fragment transfer and phylogenetic analysis. Genes 13(7): 1287. https://doi.org/10.3390/genes13071287

[18]

He XD, Li FG, Li M, Weng QJ, Shi JS, Mo XY, Gan SM (2012) Quantitative genetics of cold hardiness and growth in Eucalyptus as estimated from E.urophylla × E. tereticornis hybrids. New For 43(3): 383–394. https://doi.org/10.1007/s11056-011-9287-3

[19]

HongZ, LiaoXZ, YeYJ, ZhangNN, YangZJ, ZhuWD, GaoW, SharbroughJ, TembrockLR, XuDP, WuZQ. A complete mitochondrial genome for fragrant Chinese rosewood (Dalbergia odorifera, Fabaceae) with comparative analyses of genome structure and intergenomic sequence transfers. BMC Genomics, 2021, 22(1): 672

[20]

HuelsenbeckJP, RonquistF. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 2001, 17(8): 754-755

[21]

IorizzoM, SenalikD, SzklarczykM, GrzebelusD, SpoonerD, SimonP. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome. BMC Plant Biol, 2012, 12: 61

[22]

JinJJ, YuWB, YangJB, SongY, DePamphilisCW, YiTS, LiDZ. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol, 2020, 21(1): 241

[23]

KatohK, StandleyDM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 2013, 30(4): 772-780

[24]

KozikA, RowanBA, LavelleD, BerkeL, Eric SchranzM, MichelmoreRW, ChristensenAC. The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS Genet, 2019, 15(8): e1008373

[25]

KuangDY, WuH, WangYL, GaoLM, ZhangSZ, LuL. Complete chloroplast genome sequence of Magnolia kWangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Genome, 2011, 54(8): 663-673

[26]

KuboT, MikamiT. Organization and variation of angiosperm mitochondrial genome. Physiol Plant, 2007, 129(1): 6-13

[27]

Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054

[28]

LetunicI, BorkP. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res, 2019, 47(W1): W256-W259

[29]

Lewis SE, Searle SJ, Harris N, Gibson M, Lyer V, Richter J, Wiel C, Bayraktaroglu L, Birney E, Crosby MA, Kaminker JS, Matthews BB, Prochnik SE, Smithy CD, Tupy JL, Rubin GM, Misra S, Mungall CJ, Clamp ME (2002) Apollo: a sequence annotation editor. Genome Biol 3(12): RESEARCH0082. https://doi.org/10.1186/gb-2002-3-12-research0082

[30]

LiH, DurbinR. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760

[31]

LiJH, LiJL, MaYB, KouL, WeiJJ, WangWX. The complete mitochondrial genome of okra (Abelmoschus esculentus): using nanopore long reads to investigate gene transfer from chloroplast genomes and rearrangements of mitochondrial DNA molecules. BMC Genomics, 2022, 23(1): 481

[32]

LiJ, TangH, LuoH, TangJ, ZhongN, XiaoLZ. Complete mitochondrial genome assembly and comparison of Camellia sinensis var. Assamica Cv Duntsa Front Plant Sci, 2023, 14: 1117002

[33]

LiYL, GuM, LiuXZ, LinJN, JiangHE, SongHY, XiaoXC, ZhouW. Sequencing and analysis of the complete mitochondrial genomes of To ona sinensis and To ona Ciliata reveal evolutionary features of Toona. BMC Genomics, 2023, 24(1): 58

[34]

Li YG, Xiao TY (2011) Advances in research of disease-resistant transgenic grass carp. Biotechnol Bull 27(1): 26–28. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2011.01.030 (in Chinese)

[35]

Li M, Shi JS, Luo JZ, Gan SM (2022b) Progress of eucalypt genetics and breeding studies in China. Journal of Nanjing Forestry University (National Science Edition) 46: 41–50. https://doi.org/10.12302/j.issn.1000-2006.202206036

[36]

LillyJW, HaveyMJ. Small, repetitive DNAs contribute significantly to the expanded mitochondrial genome of cucumber. Genetics, 2001, 159(1): 317-328

[37]

LiuD, GuoHL, ZhuJL, QuK, ChenY, GuoYT, DingP, YangHP, XuT, JingQ, HanSJ, LiW, TongBQ. Complex physical structure of complete mitochondrial genome of Quercus acutissima (Fagaceae): a significant energy plant. Genes, 2022, 13(8): 1321

[38]

LiuH, ZhaoW, ZhangRG, MaoJF, WangXR. Repetitive elements, sequence turnover and cyto-nuclear gene transfer in gymnosperm mitogenomes. Front Genet, 2022, 13: 867736

[39]

LiuD, QuK, YuanYC, ZhaoZH, ChenY, HanB, LiW, El-KassabyYA, YinYY, XieXM, TongBQ, LiuHS. Complete sequence and comparative analysis of the mitochondrial genome of the rare and endangered Clematis acerifolia, the first clematis mitogenome to provide new insights into the phylogenetic evolutionary status of the genus. Front Genet, 2023, 13: 1050040

[40]

LoweTM, EddySR. tRNAscan-SE a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res, 1997, 25(5): 955-964

[41]

LuoJZ, XieYJ, CaoJG, LuWH, RenSQ. Genetic variation in 2-year Eucalypt hybrids' growth and typhoon resistance. Acta Prataculturae Sin, 2009, 18(6): 91-97(in Chinese)

[42]

LynchM, KoskellaB, SchaackS. Mutation pressure and the evolution of organelle genomic architecture. Science, 2006, 311(5768): 1727-1730

[43]

MaQY, WangYX, LiSS, WenJ, ZhuL, YanKY, DuYM, RenJ, LiSX, ChenZ, BiCW, LiQZ. Assembly and comparative analysis of the first complete mitochondrial genome of Acer truncatum Bunge: a woody oil-tree species producing nervonic acid. BMC Plant Biol, 2022, 22(1): 29

[44]

MachadoLO, VieiraLDN, StefenonVM, FaoroH, PedrosaFO, GuerraMP, NodariRO. Molecular relationships of Campomanesia xanthocarpa within Myrtaceae based on the complete plastome sequence and on the plastid ycf2 gene. Genet Mol Biol, 2020, 43(2): e20180377

[45]

Michael T, Pascal L, Tommaso P, Ulbricht-Jones ES, Axel F, Ralph B, Stephan G (2017) GeSeq–versatile and accurate annotation of organelle genomes. Nucl Acids Res 45:W6–W11. https://doi.org/10.1093/nar/gkx391

[46]

MowerJP. The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res, 2009, 37: W253-W259

[47]

MowerJP. Variation in protein gene and intron content among land plant mitogenomes. Mitochondrion, 2020, 53: 203-213

[48]

MyburgAA, GrattapagliaD, TuskanGA, HellstenU, HayesRD, GrimwoodJ, JenkinsJ, LindquistE, TiceH, BauerD, GoodsteinDM, DubchakI, PoliakovA, MizrachiE, KullanARK, HusseySG, PinardD, van der MerweK, SinghP, van JaarsveldI, Silva-JuniorOB, TogawaRC, PappasMR, FariaDA, SansaloniCP, PetroliCD, YangXH, RanjanP, TschaplinskiTJ, YeCY, LiT, SterckL, VannesteK, MuratF, SolerM, ClementeHS, SaidiN, Cassan-WangH, DunandC, HeferCA, Bornberg-BauerE, KerstingAR, ViningK, AmarasingheV, RanikM, NaithaniS, ElserJ, BoydAE, ListonA, SpataforaJW, DharmwardhanaP, RajaR, SullivanC, RomanelE, Alves-FerreiraM, KülheimC, FoleyW, CarochaV, PaivaJ, KudrnaD, BrommonschenkelSH, PasqualiG, ByrneM, RigaultP, TibbitsJ, SpokeviciusA, JonesRC, SteaneDA, VaillancourtRE, PottsBM, JoubertF, BarryK, PappasGJ, StraussSH, JaiswalP, Grima-PettenatiJ, SalseJ, Van de PeerY, RokhsarDS, SchmutzJ. The genome of Eucalyptus grandis. Nature, 2014, 510(7505): 356-362

[49]

NiuL, ZhangYY, YangCM, YangJ, RenW, ZhongXF, ZhaoQQ, XingGJ, ZhaoYG, YangXD. Complete mitochondrial genome sequence and comparative analysis of the cultivated yellow nutsedge. Plant Genome, 2022, 15(3): e20239

[50]

Niu YF, Lu YJ, Song WC, He XY, Liu ZY, Zheng C, Wang S, Shi C, Liu J (2022) Assembly and comparative analysis of the complete mitochondrial genome of three Macadamia species (M. integrifolia, M. ternifolia and M. tetraphylla). PLoS One 17(5): e0263545. https://doi.org/10.1371/journal.pone.0263545

[51]

OgiharaY, YamazakiY, MuraiK, KannoA, TerachiT, ShiinaT, MiyashitaN, NasudaS, NakamuraC, MoriN, TakumiS, MurataM, FutoS, TsunewakiK. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic Acids Res, 2005, 33(19): 6235-6250

[52]

PetersenG, AndersonB, BraunHP, MeyerEH, MøllerIM. Mitochondria in parasitic plants. Mitochondrion, 2020, 52: 173-182

[53]

PinardD, MyburgAA, MizrachiE. The plastid and mitochondrial genomes of Eucalyptus grandis. BMC Genomics, 2019, 20(1): 132

[54]

QianJ, SongJY, GaoHH, ZhuYJ, XuJ, PangXH, YaoH, SunC, LiXE, LiCY, LiuJY, XuHB, ChenSL. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS ONE, 2013, 8(2): e57607

[55]

QiaoYG, ZhangXR, LiZ, SongY, SunZ. Assembly and comparative analysis of the complete mitochondrial genome of Bupleurum chinense DC. BMC Genomics, 2022, 23(1): 664

[56]

QuYS, ZhouPY, TongCF, BiCW, XuLA. Assembly and analysis of the Populus deltoides mitochondrial genome: the first report of a multicircular mitochondrial conformation for the genus Populus. J for Res, 2023, 34(3): 717-733

[57]

RiceDW, AlversonAJ, RichardsonAO, YoungGJ, Virginia Sanchez-PuertaM, MunzingerJ, BarryK, BooreJL, ZhangY, DePamphilisCW, KnoxEB, PalmerJD. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science, 2013, 342(6165): 1468-1473

[58]

RüdingerM, VolkmarU, LenzH, Groth-MalonekM, KnoopV. Nuclear DYW-type PPR gene families diversify with increasing RNA editing frequencies in liverwort and moss mitochondria. J Mol Evol, 2012, 74(1–2): 37-51

[59]

SauK, GuptaSK, SauS, MandalSC, GhoshTC. Factors influencing synonymous Codon and amino acid usage biases in Mimivirus. Biosystems, 2006, 85(2): 107-113

[60]

Shen C, Li L, Ouyang L, Su M, Guo K (2023) E. urophylla × E. grandis high-quality genome and comparative genomics provide insights on evolution and diversification of Eucalyptus. BMC Genomics 24(1): 223. https://doi.org/10.1186/s12864-023-09318-0

[61]

ShiLC, ChenHM, JiangM, WangLQ, WuX, HuangLF, LiuC. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res, 2019, 47(W1): W65-W73

[62]

ShikanaiT. RNA editing in plant organelles: machinery, physiological function and evolution. Cell Mol Life Sci, 2006, 63(6): 698-708

[63]

SloanDB, AlversonAJ, ChuckalovcakJP, WuM, McCauleyDE, PalmerJD, TaylorDR. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol, 2012, 10(1): e1001241

[64]

Stefan K, Choudhuri JV, Enno O, Chris S, Jens S, Robert G (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucl Acids Res 29(22):4633–4642. https://doi.org/10.1093/nar/29.22.4633

[65]

SugiyamaY, WataseY, NagaseM, MakitaN, YaguraS, HiraiA, SugiuraM. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics, 2005, 272(6): 603-615

[66]

TanakaY, TsudaM, YasumotoK, TerachiT, YamagishiH. The complete mitochondrial genome sequence of Brassica oleracea and analysis of coexisting mitotypes. Curr Genet, 2014, 60(4): 277-284

[67]

TangDF, HuangSH, QuanCQ, HuangY, MiaoJH, WeiF. Mitochondrial genome characteristics and phylogenetic analysis of the medicinal and edible plant Mesona chinensis Benth. Front Genet, 2023, 13: 1056389

[68]

WangYP, TangHB, DebarryJD, TanX, LiJP, WangXY, LeeTH, JinHZ, MarlerB, GuoH, KissingerJC, PatersonAH. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2012, 40(7): e49

[69]

WangXL, BiCW, XuYQ, WeiSY, DaiXG, YinTM, YeN. The whole genome assembly and comparative genomic research of Thellungiella parvula (extremophile crucifer) mitochondrion. Int J Genomics, 2016, 2016: 5283628

[70]

Wang X, Zhang RG, Yun QZ, Xu YY, Zhao GC, Liu JM, Shi SL, Chen Z, Jia LM (2021) Comprehensive analysis of complete mitochondrial genome of Sapindus mukorossi Gaertn.: an important industrial oil tree species in China. Ind Crops Prod 174: 114210. https://doi.org/10.1016/j.indcrop.2021.114210

[71]

Weng QJ, Lai QX, Li FG, Zhou CP, Li JW, Li M, Gan SM (2015) Genetic analysis on early growth and cold tolerance of Eucalyptus urophylla × E. dunnii hybrids. Journal of Nanjing Forestry University (National Science Edition) 39(5):33–38. https://doi.org/10.3969/j.issn.1000-2006.2015.05.006

[72]

WickRR, SchultzMB, ZobelJ, HoltKE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics, 2015, 31(20): 3350-3352

[73]

Wynn EL, Christensen AC (2019) Repeats of unusual size in plant mitochondrial genomes: identification, incidence and evolution. G3 9(2): 549–559. https://doi.org/10.1534/g3.118.200948

[74]

Xiang DY, Zheng B, Zhou W, Shen WH (1999) Overview of Eucalyptus breeding in Guangxi. Guangxi For Sci 28(2): 71–80. https://doi.org/10.19692/j.cnki.gfs.1999.02.004 (in Chinese)

[75]

XiongYL, YuQQ, XiongY, ZhaoJM, LeiX, LiuL, LiuW, PengY, ZhangJB, LiDX, BaiSQ, MaX. The complete mitogenome of Elymus sibiricus and insights into its evolutionary pattern based on simple repeat sequences of seed plant mitogenomes. Front Plant Sci, 2022, 12: 802321

[76]

XuY, DongY, ChengWQ, WuKY, GaoHD, LiuL, XuL, GongBC. Characterization and phylogenetic analysis of the complete mitochondrial genome sequence of Diospyros oleifera, the first representative from the family Ebenaceae. Heliyon, 2022, 8(7): e09870

[77]

YangHX, LiWH, YuXL, ZhangXY, ZhangZY, LiuYX, WangWX, TianXX. Insights into molecular structure, genome evolution and phylogenetic implication through mitochondrial genome sequence of Gleditsia sinensis. Sci Rep, 2021, 11(1): 14850

[78]

YouCH, CuiTZ, ZhangC, ZangSJ, SuYC, QueYX. Assembly of the complete mitochondrial genome of Gelsemium elegans revealed the existence of homologous conformations generated by a repeat mediated recombination. Int J Mol Sci, 2022, 24(1): 527

[79]

ZhangHE, MeltzerP, DavisS. RCircos: an R package for Circos 2D track plots. BMC Bioinf, 2013, 14: 244

[80]

ZhangD, GaoFL, JakovlićI, ZouH, ZhangJ, LiWX, WangGT. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour, 2020, 20(1): 348-355

[81]

Zhang WL, Li L, Li GH (2018) Characterization of the complete chloroplast genome of shrubby Sophora (Sophora flavescens Ait.). Mitochondrial DNA B Resour 3(2): 1282–1283. https://doi.org/10.1080/23802359.2018.1532839

[82]

Zheng ZJ (2013) Research progress on Eucalyptus urophyllus DH32–29 clonal plantation. Protection Forest Science and Technology (7): 64–68. https://doi.org/10.13601/j.issn.1005-5215.2013.07.039

RIGHTS & PERMISSIONS

Northeast Forestry University

AI Summary AI Mindmap
PDF

240

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/