Assembly and phylogenetic analysis of the complete mitochondrial genome of a widely planted hybrid eucalypt (Eucalyptus urophylla ×  E. grandis)

Chenhe Li , Jing Wang , Chunjie Fan , Xiangyang Kang , Jun Yang

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 67

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) :67 DOI: 10.1007/s11676-025-01869-0
Original Paper
research-article

Assembly and phylogenetic analysis of the complete mitochondrial genome of a widely planted hybrid eucalypt (Eucalyptus urophylla ×  E. grandis)

Author information +
History +
PDF

Abstract

Eucalyptus urophylla ×  E. grandis is a major hybrid species of timber plantations. However, our understanding of Eucalyptus mitochondrial genome, especially within the Myrtaceae family, is limited. In this study, we employed hybrid sequencing combining the Illumina and Oxford Nanopore sequencing to assemble and annotate the mitogenome (mtDNA) of E. urophylla ×  E. grandis. Our results reveal a structure characterized by one circular molecule, with a cumulative length of 483,907 base pairs (bp) and a GC content of 44.96%. The circular molecule collectively harbored 59 annotated genes. Among these, 38 were unique protein-coding genes (PCGs), accompanied by 18 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. Our study also examined repetitive sequences, RNA editing sites, and intracellular sequence transfers within the mtDNA. Furthermore, we conducted a phylogenetic analysis between E. urophylla ×  E. grandis and 30 closely related species based on genetic affinities. The outcomes furnish a high-quality organelle genome for E. urophylla ×  E. grandis, thereby explaining basic insights into organelle genome evolution and phylogenetic relationships.

Keywords

Eucalyptus urophylla ×  E. grandis / Myrtaceae / Mitochondrial genome / Repetitive sequences / RNA editing / Phylogenetic relationship

Cite this article

Download citation ▾
Chenhe Li, Jing Wang, Chunjie Fan, Xiangyang Kang, Jun Yang. Assembly and phylogenetic analysis of the complete mitochondrial genome of a widely planted hybrid eucalypt (Eucalyptus urophylla ×  E. grandis). Journal of Forestry Research, 2025, 36(1): 67 DOI:10.1007/s11676-025-01869-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alverson AJ, Wei XX, Rice DW, Stern DB, Barry K, Palmer JD. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Biol Evol, 2010, 27(6): 1436-1448

[2]

Beier S, Thiel T, Münch T, Scholz U, Mascher M. MISA-web: a web server for microsatellite prediction. Bioinformatics, 2017, 33(16): 2583-2585

[3]

Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res, 1999, 27(2): 573-580

[4]

Bi CW, Paterson AH, Wang XL, Xu YQ, Wu DY, Qu YS, Jiang AN, Ye QL, Ye N. Analysis of the complete mitochondrial genome sequence of the diploid cotton Gossypium raimondii by comparative genomics approaches. Biomed Res Int, 2016, 2016: 5040598

[5]

Bi CW, Lu N, Xu YQ, He CP, Lu ZH. Characterization and analysis of the mitochondrial genome of common bean (Phaseolus vulgaris) by comparative genomic approaches. Int J Mol Sci, 2020, 21(11): 3778

[6]

Brenner WG, Mader M, Müller NA, Hoenicka H, Schroeder H, Zorn I, Fladung M, Kersten B (2019) High level of conservation of mitochondrial RNA editing sites among four Populus species. G3 9(3): 709–717. https://doi.org/10.1534/g3.118.200763

[7]

Chang SX, Yang TT, Du TQ, Huang YJ, Chen JM, Yan JY, He JB, Guan RZ. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica. BMC Genomics, 2011, 12: 497

[8]

Chaw SM, Shih AC, Wang D, Wu YW, Liu SM, Chou TY. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol Biol Evol, 2008, 25(3603-615

[9]

Chen Y, Ye WC, Zhang YD, Xu YS. High speed BLASTN: an accelerated MegaBLAST search tool. Nucleic Acids Res, 2015, 43(167762-7768

[10]

Dong SS, Zhao CX, Chen F, Liu YH, Zhang SZ, Wu H, Zhang LS, Liu Y. The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination. BMC Genomics, 2018, 19(1): 614

[11]

Edera AA, Small I, Milone DH, Virginia Sanchez-Puerta M. Deepred-Mt: Deep representation learning for predicting C-to-U RNA editing in plant mitochondria. Comput Biol Med, 2021, 136: 104682

[12]

Eguiluz M, Rodrigues NF, Guzman F, Yuyama P, Margis R. The chloroplast genome sequence from Eugenia uniflora, a Myrtaceae from Neotropics. Plant Syst Evol, 2017, 303(91199-1212

[13]

Gan SM, Li M, Li F, Wu KM, Wu JY, Bai J. Genetic analysis of growth and susceptibility to bacterial wilt (Ralstonia solanacearum) in Eucalyptus by interspecific factorial crossing. Silvae Genet, 2004, 53: 254-258

[14]

Glover KE, Spencer DF, Gray MW. Identification and structural characterization of nucleus-encoded transfer RNAs imported into wheat mitochondria. J Biol Chem, 2001, 276(1639-648

[15]

Grattapaglia D, Vaillancourt RE, Shepherd M, Thumma BR, Foley W, Külheim C, Potts BM, Myburg AA. Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet Genomes, 2012, 8(3): 463-508

[16]

Gualberto JM, Newton KJ. Plant mitochondrial genomes: dynamics and mechanisms of mutation. Annu Rev Plant Biol, 2017, 68: 225-252

[17]

Hao J, Liang YY, Su YJ, Wang T (2022) The complete mitochondrial genome of Ophioglossum vulgatum L. is with highly repetitive sequences: intergenomic fragment transfer and phylogenetic analysis. Genes 13(7): 1287. https://doi.org/10.3390/genes13071287

[18]

He XD, Li FG, Li M, Weng QJ, Shi JS, Mo XY, Gan SM (2012) Quantitative genetics of cold hardiness and growth in Eucalyptus as estimated from E.urophylla × E. tereticornis hybrids. New For 43(3): 383–394. https://doi.org/10.1007/s11056-011-9287-3

[19]

Hong Z, Liao XZ, Ye YJ, Zhang NN, Yang ZJ, Zhu WD, Gao W, Sharbrough J, Tembrock LR, Xu DP, Wu ZQ. A complete mitochondrial genome for fragrant Chinese rosewood (Dalbergia odorifera, Fabaceae) with comparative analyses of genome structure and intergenomic sequence transfers. BMC Genomics, 2021, 22(1): 672

[20]

Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 2001, 17(8754-755

[21]

Iorizzo M, Senalik D, Szklarczyk M, Grzebelus D, Spooner D, Simon P. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome. BMC Plant Biol, 2012, 12: 61

[22]

Jin JJ, Yu WB, Yang JB, Song Y, DePamphilis CW, Yi TS, Li DZ. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol, 2020, 21(1): 241

[23]

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 2013, 30(4772-780

[24]

Kozik A, Rowan BA, Lavelle D, Berke L, Eric Schranz M, Michelmore RW, Christensen AC. The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS Genet, 2019, 15(8e1008373

[25]

Kuang DY, Wu H, Wang YL, Gao LM, Zhang SZ, Lu L. Complete chloroplast genome sequence of Magnolia kWangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Genome, 2011, 54(8663-673

[26]

Kubo T, Mikami T. Organization and variation of angiosperm mitochondrial genome. Physiol Plant, 2007, 129(1): 6-13

[27]

Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054

[28]

Letunic I, Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res, 2019, 47(W1): W256-W259

[29]

Lewis SE, Searle SJ, Harris N, Gibson M, Lyer V, Richter J, Wiel C, Bayraktaroglu L, Birney E, Crosby MA, Kaminker JS, Matthews BB, Prochnik SE, Smithy CD, Tupy JL, Rubin GM, Misra S, Mungall CJ, Clamp ME (2002) Apollo: a sequence annotation editor. Genome Biol 3(12): RESEARCH0082. https://doi.org/10.1186/gb-2002-3-12-research0082

[30]

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760

[31]

Li JH, Li JL, Ma YB, Kou L, Wei JJ, Wang WX. The complete mitochondrial genome of okra (Abelmoschus esculentus): using nanopore long reads to investigate gene transfer from chloroplast genomes and rearrangements of mitochondrial DNA molecules. BMC Genomics, 2022, 23(1): 481

[32]

Li J, Tang H, Luo H, Tang J, Zhong N, Xiao LZ. Complete mitochondrial genome assembly and comparison of Camellia sinensis var. Assamica Cv Duntsa Front Plant Sci, 2023, 14: 1117002

[33]

Li YL, Gu M, Liu XZ, Lin JN, Jiang HE, Song HY, Xiao XC, Zhou W. Sequencing and analysis of the complete mitochondrial genomes of To ona sinensis and To ona Ciliata reveal evolutionary features of Toona. BMC Genomics, 2023, 24(158

[34]

Li YG, Xiao TY (2011) Advances in research of disease-resistant transgenic grass carp. Biotechnol Bull 27(1): 26–28. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2011.01.030 (in Chinese)

[35]

Li M, Shi JS, Luo JZ, Gan SM (2022b) Progress of eucalypt genetics and breeding studies in China. Journal of Nanjing Forestry University (National Science Edition) 46: 41–50. https://doi.org/10.12302/j.issn.1000-2006.202206036

[36]

Lilly JW, Havey MJ. Small, repetitive DNAs contribute significantly to the expanded mitochondrial genome of cucumber. Genetics, 2001, 159(1317-328

[37]

Liu D, Guo HL, Zhu JL, Qu K, Chen Y, Guo YT, Ding P, Yang HP, Xu T, Jing Q, Han SJ, Li W, Tong BQ. Complex physical structure of complete mitochondrial genome of Quercus acutissima (Fagaceae): a significant energy plant. Genes, 2022, 13(81321

[38]

Liu H, Zhao W, Zhang RG, Mao JF, Wang XR. Repetitive elements, sequence turnover and cyto-nuclear gene transfer in gymnosperm mitogenomes. Front Genet, 2022, 13: 867736

[39]

Liu D, Qu K, Yuan YC, Zhao ZH, Chen Y, Han B, Li W, El-Kassaby YA, Yin YY, Xie XM, Tong BQ, Liu HS. Complete sequence and comparative analysis of the mitochondrial genome of the rare and endangered Clematis acerifolia, the first clematis mitogenome to provide new insights into the phylogenetic evolutionary status of the genus. Front Genet, 2023, 13: 1050040

[40]

Lowe TM, Eddy SR. tRNAscan-SE a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res, 1997, 25(5955-964

[41]

Luo JZ, Xie YJ, Cao JG, Lu WH, Ren SQ. Genetic variation in 2-year Eucalypt hybrids' growth and typhoon resistance. Acta Prataculturae Sin, 2009, 18(691-97(in Chinese)

[42]

Lynch M, Koskella B, Schaack S. Mutation pressure and the evolution of organelle genomic architecture. Science, 2006, 311(5768): 1727-1730

[43]

Ma QY, Wang YX, Li SS, Wen J, Zhu L, Yan KY, Du YM, Ren J, Li SX, Chen Z, Bi CW, Li QZ. Assembly and comparative analysis of the first complete mitochondrial genome of Acer truncatum Bunge: a woody oil-tree species producing nervonic acid. BMC Plant Biol, 2022, 22(1): 29

[44]

Machado LO, Vieira LDN, Stefenon VM, Faoro H, Pedrosa FO, Guerra MP, Nodari RO. Molecular relationships of Campomanesia xanthocarpa within Myrtaceae based on the complete plastome sequence and on the plastid ycf2 gene. Genet Mol Biol, 2020, 43(2e20180377

[45]

Michael T, Pascal L, Tommaso P, Ulbricht-Jones ES, Axel F, Ralph B, Stephan G (2017) GeSeq–versatile and accurate annotation of organelle genomes. Nucl Acids Res 45:W6–W11. https://doi.org/10.1093/nar/gkx391

[46]

Mower JP. The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res, 2009, 37: W253-W259

[47]

Mower JP. Variation in protein gene and intron content among land plant mitogenomes. Mitochondrion, 2020, 53: 203-213

[48]

Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan ARK, Hussey SG, Pinard D, van der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang XH, Ranjan P, Tschaplinski TJ, Ye CY, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Külheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Van de Peer Y, Rokhsar DS, Schmutz J. The genome of Eucalyptus grandis. Nature, 2014, 510(7505356-362

[49]

Niu L, Zhang YY, Yang CM, Yang J, Ren W, Zhong XF, Zhao QQ, Xing GJ, Zhao YG, Yang XD. Complete mitochondrial genome sequence and comparative analysis of the cultivated yellow nutsedge. Plant Genome, 2022, 15(3): e20239

[50]

Niu YF, Lu YJ, Song WC, He XY, Liu ZY, Zheng C, Wang S, Shi C, Liu J (2022) Assembly and comparative analysis of the complete mitochondrial genome of three Macadamia species (M. integrifolia, M. ternifolia and M. tetraphylla). PLoS One 17(5): e0263545. https://doi.org/10.1371/journal.pone.0263545

[51]

Ogihara Y, Yamazaki Y, Murai K, Kanno A, Terachi T, Shiina T, Miyashita N, Nasuda S, Nakamura C, Mori N, Takumi S, Murata M, Futo S, Tsunewaki K. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic Acids Res, 2005, 33(196235-6250

[52]

Petersen G, Anderson B, Braun HP, Meyer EH, Møller IM. Mitochondria in parasitic plants. Mitochondrion, 2020, 52: 173-182

[53]

Pinard D, Myburg AA, Mizrachi E. The plastid and mitochondrial genomes of Eucalyptus grandis. BMC Genomics, 2019, 20(1): 132

[54]

Qian J, Song JY, Gao HH, Zhu YJ, Xu J, Pang XH, Yao H, Sun C, Li XE, Li CY, Liu JY, Xu HB, Chen SL. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS ONE, 2013, 8(2e57607

[55]

Qiao YG, Zhang XR, Li Z, Song Y, Sun Z. Assembly and comparative analysis of the complete mitochondrial genome of Bupleurum chinense DC. BMC Genomics, 2022, 23(1664

[56]

Qu YS, Zhou PY, Tong CF, Bi CW, Xu LA. Assembly and analysis of the Populus deltoides mitochondrial genome: the first report of a multicircular mitochondrial conformation for the genus Populus. J for Res, 2023, 34(3717-733

[57]

Rice DW, Alverson AJ, Richardson AO, Young GJ, Virginia Sanchez-Puerta M, Munzinger J, Barry K, Boore JL, Zhang Y, DePamphilis CW, Knox EB, Palmer JD. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science, 2013, 342(6165): 1468-1473

[58]

Rüdinger M, Volkmar U, Lenz H, Groth-Malonek M, Knoop V. Nuclear DYW-type PPR gene families diversify with increasing RNA editing frequencies in liverwort and moss mitochondria. J Mol Evol, 2012, 74(1–2): 37-51

[59]

Sau K, Gupta SK, Sau S, Mandal SC, Ghosh TC. Factors influencing synonymous Codon and amino acid usage biases in Mimivirus. Biosystems, 2006, 85(2): 107-113

[60]

Shen C, Li L, Ouyang L, Su M, Guo K (2023) E. urophylla × E. grandis high-quality genome and comparative genomics provide insights on evolution and diversification of Eucalyptus. BMC Genomics 24(1): 223. https://doi.org/10.1186/s12864-023-09318-0

[61]

Shi LC, Chen HM, Jiang M, Wang LQ, Wu X, Huang LF, Liu C. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res, 2019, 47(W1): W65-W73

[62]

Shikanai T. RNA editing in plant organelles: machinery, physiological function and evolution. Cell Mol Life Sci, 2006, 63(6): 698-708

[63]

Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, Taylor DR. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol, 2012, 10(1): e1001241

[64]

Stefan K, Choudhuri JV, Enno O, Chris S, Jens S, Robert G (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucl Acids Res 29(22):4633–4642. https://doi.org/10.1093/nar/29.22.4633

[65]

Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics, 2005, 272(6603-615

[66]

Tanaka Y, Tsuda M, Yasumoto K, Terachi T, Yamagishi H. The complete mitochondrial genome sequence of Brassica oleracea and analysis of coexisting mitotypes. Curr Genet, 2014, 60(4): 277-284

[67]

Tang DF, Huang SH, Quan CQ, Huang Y, Miao JH, Wei F. Mitochondrial genome characteristics and phylogenetic analysis of the medicinal and edible plant Mesona chinensis Benth. Front Genet, 2023, 13: 1056389

[68]

Wang YP, Tang HB, Debarry JD, Tan X, Li JP, Wang XY, Lee TH, Jin HZ, Marler B, Guo H, Kissinger JC, Paterson AH. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2012, 40(7e49

[69]

Wang XL, Bi CW, Xu YQ, Wei SY, Dai XG, Yin TM, Ye N. The whole genome assembly and comparative genomic research of Thellungiella parvula (extremophile crucifer) mitochondrion. Int J Genomics, 2016, 2016: 5283628

[70]

Wang X, Zhang RG, Yun QZ, Xu YY, Zhao GC, Liu JM, Shi SL, Chen Z, Jia LM (2021) Comprehensive analysis of complete mitochondrial genome of Sapindus mukorossi Gaertn.: an important industrial oil tree species in China. Ind Crops Prod 174: 114210. https://doi.org/10.1016/j.indcrop.2021.114210

[71]

Weng QJ, Lai QX, Li FG, Zhou CP, Li JW, Li M, Gan SM (2015) Genetic analysis on early growth and cold tolerance of Eucalyptus urophylla × E. dunnii hybrids. Journal of Nanjing Forestry University (National Science Edition) 39(5):33–38. https://doi.org/10.3969/j.issn.1000-2006.2015.05.006

[72]

Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics, 2015, 31(203350-3352

[73]

Wynn EL, Christensen AC (2019) Repeats of unusual size in plant mitochondrial genomes: identification, incidence and evolution. G3 9(2): 549–559. https://doi.org/10.1534/g3.118.200948

[74]

Xiang DY, Zheng B, Zhou W, Shen WH (1999) Overview of Eucalyptus breeding in Guangxi. Guangxi For Sci 28(2): 71–80. https://doi.org/10.19692/j.cnki.gfs.1999.02.004 (in Chinese)

[75]

Xiong YL, Yu QQ, Xiong Y, Zhao JM, Lei X, Liu L, Liu W, Peng Y, Zhang JB, Li DX, Bai SQ, Ma X. The complete mitogenome of Elymus sibiricus and insights into its evolutionary pattern based on simple repeat sequences of seed plant mitogenomes. Front Plant Sci, 2022, 12: 802321

[76]

Xu Y, Dong Y, Cheng WQ, Wu KY, Gao HD, Liu L, Xu L, Gong BC. Characterization and phylogenetic analysis of the complete mitochondrial genome sequence of Diospyros oleifera, the first representative from the family Ebenaceae. Heliyon, 2022, 8(7e09870

[77]

Yang HX, Li WH, Yu XL, Zhang XY, Zhang ZY, Liu YX, Wang WX, Tian XX. Insights into molecular structure, genome evolution and phylogenetic implication through mitochondrial genome sequence of Gleditsia sinensis. Sci Rep, 2021, 11(114850

[78]

You CH, Cui TZ, Zhang C, Zang SJ, Su YC, Que YX. Assembly of the complete mitochondrial genome of Gelsemium elegans revealed the existence of homologous conformations generated by a repeat mediated recombination. Int J Mol Sci, 2022, 24(1527

[79]

Zhang HE, Meltzer P, Davis S. RCircos: an R package for Circos 2D track plots. BMC Bioinf, 2013, 14: 244

[80]

Zhang D, Gao FL, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour, 2020, 20(1348-355

[81]

Zhang WL, Li L, Li GH (2018) Characterization of the complete chloroplast genome of shrubby Sophora (Sophora flavescens Ait.). Mitochondrial DNA B Resour 3(2): 1282–1283. https://doi.org/10.1080/23802359.2018.1532839

[82]

Zheng ZJ (2013) Research progress on Eucalyptus urophyllus DH32–29 clonal plantation. Protection Forest Science and Technology (7): 64–68. https://doi.org/10.13601/j.issn.1005-5215.2013.07.039

RIGHTS & PERMISSIONS

Northeast Forestry University

PDF

357

Accesses

0

Citation

Detail

Sections
Recommended

/