Habitat suitability modeling of a nearly extinct rosewood species (Dalbergia odorifera) under current, and future climate conditions

Jiuxin Lai , Minliang Fan , Yu Liu , Ping Huang , Hannes Gaisberger , Changhong Li , Yongqi Zheng , Furong Lin

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1)

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) DOI: 10.1007/s11676-025-01853-8
Original Paper

Habitat suitability modeling of a nearly extinct rosewood species (Dalbergia odorifera) under current, and future climate conditions

Author information +
History +
PDF

Abstract

The influence of global climate change on endangered species is of growing concern, especially for rosewood species that are in urgent need of protection and restoration. Ecological niche models are commonly used to evaluate probable species’ distribution under climate change and contribute to decision-making to define efficient management strategies. A model was developed to forecast which habitat was most likely appropriate for the Dalbergia odorifera. We screened the main climatic variables that describe the current geographic distribution of the species based on maximum entropy modelling (Maxent). We subsequently assessed its potential future distribution under moderate (RCP2.6) and severe (RCP8.5) climate change scenarios for the years 2050 and 2070. The precipitation ranges of the wettest month and the warmest quarter are the primary limiting factors for the current distribution of D. odorifera among the climatic predictors. Climate change will be expected to have beneficial effects on the distribution range of D. odorifera. In conclusion, the main limits for the distribution of D. odorifera are determined by the level of precipitation and human activities. The results of this study indicate that the coasts of southern China and Chongqing will play a key role in the protection and restoration of D. odorifera in the future.

Keywords

Climate change / Dalbergia odorifera / Habitat suitability / Model tunning / Forest conservation

Cite this article

Download citation ▾
Jiuxin Lai, Minliang Fan, Yu Liu, Ping Huang, Hannes Gaisberger, Changhong Li, Yongqi Zheng, Furong Lin. Habitat suitability modeling of a nearly extinct rosewood species (Dalbergia odorifera) under current, and future climate conditions. Journal of Forestry Research, 2025, 36(1): DOI:10.1007/s11676-025-01853-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acevedo P, Jiménez-Valverde A, Lobo JM, Real R (2012) Delimiting the geographical background in species distribution modelling. J Biogeogr 39:1383–1390. https://doi.org/10.1111/j.1365-2699.2012.02713.x

[2]

Aguirre-GutiérrezJ, van TreurenR, HoekstraR, van HintumTJL. Crop wild relatives range shifts and conservation in Europe under climate change. Divers Distrib, 2017, 23(7): 739-750

[3]

AshcroftMB, FrenchKO, ChisholmLA. An evaluation of environmental factors affecting species distributions. Ecol Model, 2011, 222(3): 524-531

[4]

Barbet-MassinM, JiguetF, AlbertCH, ThuillerW. Selecting pseudo-absences for species distribution models: how, where and how many?. Ecol Evol, 2012, 3(2): 327-338

[5]

BartleinPJ, HarrisonSP, BrewerS, ConnorS, DavisBAS, GajewskiK, GuiotJ, Harrison-PrenticeTI, HendersonA, PeyronO, PrenticeIC, ScholzeM, SeppäH, ShumanB, SugitaS, ThompsonRS, ViauAE, WilliamsJ, WuH. Pollen-based continental climate reconstructions at 6 and 21ka: a global synthesis. Clim Dyn, 2011, 37(3): 775-802

[6]

BehroozianM, EjtehadiH, PetersonAT, MemarianiF, MesdaghiM. Climate change influences on the potential distribution of Dianthus polylepis Bien ex. Boiss. (Caryophyllaceae), an endemic species in the Irano-Turanian region. PLoS ONE, 2020, 15(8): e0237527

[7]

CauwerV, MuysB, RevermannR, TrabuccoA. Potential, realised, future distribution and environmental suitability for Pterocarpus angolensis DC in southern Africa. Forest Ecol Manag, 2014, 315: 211-226

[8]

Cotrina A, Rojas NB, Bandopadhyay S, Ghosh S, Torres GC, Oliva M, Guzman BK, Salas LR (2021) Biogeographic distribution of Cedrela spp. genus in Peru using maxent modeling: A conservation and restoration approach. Diversity 13(6):261. https://doi.org/10.3390/d13060261

[9]

CuiZY, XuDP, YangZJ, ZhangNN, LiuXJ, HongZ. A review of mechanism and artificial promotion of heartwood formation. World Forestry Res, 2016, 29: 33-37

[10]

De CauwerV, MuysB, RevermannR, TrabuccoA. Potential, realised, future distribution and environmental suitability for Pterocarpus angolensis DC in southern Africa. For Ecol Manag, 2014, 315: 211-226

[11]

DexterAR. Soil physical quality Part I Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 2004, 120(3–4): 201-214

[12]

DivíšekJ, ChytrýM, BeckageB, GotelliNJ, LososováZ, PyšekP, RichardsonDM, MolofskyJ. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat Commun, 2018, 9(1): 4631

[13]

DormannCF, ElithJ, BacherS, BuchmannC, CarlG, CarréG, García MarquézJR, GruberB, LafourcadeB, LeitãoPJ, MünkemüllerT, McCleanC, OsbornePE, ReinekingB, SchröderB, SkidmoreAK, ZurellD, LautenbachS. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 2013, 36(1): 27-46

[14]

Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–51. https://doi.org/10.1111/j.2006.0906-7590.04596.x

[15]

ElithJ, PhillipsSJ, HastieT, DudíkM, CheeYE, YatesCJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib, 2011, 17(1): 43-57

[16]

FengR, BhattacharyaT, Otto-BliesnerBL, BradyEC, HaywoodAM, TindallJC, HunterSJ, Abe-OuchiA, ChanWL, KageyamaM, ContouxC, GuoCC, LiXY, LohmannG, StepanekC, TanN, ZhangQ, ZhangZS, HanZX, WilliamsCJR, LuntDJ, DowsettHJ, ChandanD, Richard PeltierW. Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks. Nat Commun, 2022, 13(1): 1306

[17]

FourcadeY, BesnardAG, SecondiJ. Evaluating interspecific niche overlaps in environmental and geographic spaces to assess the value of umbrella species. J Avian Biol, 2017, 48(12): 1563-1574

[18]

HijmansRJ, CameronSE, ParraJL, JonesPG, JarvisA. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol: RMetS, 2005, 25(15): 1965-1978

[19]

HillMP, HoffmannAA, McCollSA, UminaPA. Distribution of cryptic blue oat mite species in Australia: current and future climate conditions. Agric For Entomol, 2012, 14(2): 127-137

[20]

HongZ, LiJ, LiuX, LianJ, ZhangN, YangZ, NiuY, CuiZ, DapingX. The chromosome-level draft genome of Dalbergia odorifera. GigaScience, 2020

[21]

HsuPC, LiT, LuoJJ, MurakamiH, KitohA, ZhaoM. Increase of global monsoon area and precipitation under global warming: a robust signal?. Geophys Res Lett, 2012, 39(6): L06701

[22]

JiangZG, MaKPThe principles of conservation biology, 2014, Beijing, Science Press: 233-256

[23]

KageyamaM, HarrisonSP, KapschML, LofverstromM, LoraJM, MikolajewiczU, Sherriff-TadanoS, VadsariaT, Abe-OuchiA, BouttesN, ChandanD, GregoireLJ, IvanovicRF, IzumiK, LeGrandeAN, LhardyF, LohmannG, MorozovaPA, OhgaitoR, PaulA, PeltierWR, PoulsenCJ, QuiquetA, RocheDM, ShiXX, TierneyJE, ValdesPJ, VolodinE, ZhuJ. The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Clim Past, 2021, 17(3): 1065-1089

[24]

LawlorJA, ComteL, GrenouilletG, LenoirJ, BaecherJA, BandaraRMWJ, BertrandR, ChenIC, DiamondSE, LancasterLT, MooreN, MurienneJ, OliveiraBF, PeclGT, PinskyML, RollandJ, RubensteinM, ScheffersBR, ThompsonLM, van AmeromB, VillalobosF, WeiskopfSR, SundayJ. Mechanisms, detection and impacts of species redistributions under climate change. Nat. Rev. Earth Environ., 2024, 5(5): 351-368

[25]

LenoirJ, SvenningJC. Climate-related range shifts–a global multidimensional synthesis and new research directions. Ecography, 2015, 38(1): 15-28

[26]

LiSP. Study on bark percentage, heartwood percentage and wood density of Dalbergia odorifera. Guangxi For Sci, 2012, 41(2): 86-90

[27]

LiZ, YuSC, WangLQ, MehmoodK, LiuWP, AlapatyK. Suppression of convective precipitation by elevated man-made aerosols is responsible for large-scale droughts in North China. Proc Natl Acad Sci USA, 2018, 115(36): E8327-E8328

[28]

LiuJ, WangB, DingQH, KuangXY, SoonW, ZoritaE. Centennial variations of the global monsoon precipitation in the last millennium: results from ECHO-G model. J Clim, 2009, 22(9): 2356-2371

[29]

LiuYZ, MuJP, NiklasKJ, LiGY, SunSC. Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan Plateau. New Phytol, 2012, 195(2): 427-436

[30]

Liu X, Xu D, Yang Z, Zhang N (2017) Geographic variations in seed germination of Dalbergia odorifera T. Chen in response to temperature. Ind Crop Prod 102:45–50. https://doi.org/10.1016/j.indcrop.2017.03.027

[31]

LiuY, HuangP, LinF, YangW, KettleCJ. Maxent modelling for predicting the potential distribution of a near threatened rosewood species (Dalbergia cultrata graham ex benth). Ecol Engin, 2019, 141: 105612

[32]

LoboJM, Jiménez-ValverdeA, RealR. AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr, 2008, 17(2): 145-151

[33]

IPCC (2018) Summary for policymakers. In: Masson-Delmotte V, Zhai P, Portner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Pean C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T. (Eds.), Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. World Meteorological Organization, Geneva, Switzerland

[34]

MengH, XieCX, YangY, WeiJH, FengJD, ChenSL. Suitable producing areas of Dalbergia odorifera T. Chen. Lishizhen Med Mater Med Res, 2010, 21(9): 2304-2306

[35]

MolesAT, PerkinsSE, LaffanSW, Flores-MorenoH, AwasthyM, TindallML, SackL, PitmanA, KattgeJ, AarssenLW, AnandM, BahnM, BlonderB, Cavender-BaresJ, CornwellWK, DíazS, DickieJB, FreschetGT, GriffithsJG, GutierrezAG, HemmingsFA, HicklerT, HitchcockTD, KeigheryM, KleyerM, KurokawaH, LeishmanMR, LiuK, NiinemetsÜ, OnipchenkoV, OnodaY, PenuelasJ, PillarVD, ReichPB, ShioderaS, SiefertA, SosinskiEE, SoudzilovskaiaNA, SwaineEK, SwensonNG, van BodegomPM, WarmanL, WeiherE, WrightIJ, ZhangHX, ZobelM, BonserSP. Which is a better predictor of plant traits: temperature or precipitation?. J Veg Sci, 2014, 25(5): 1167-1180

[36]

MorrisWF, EhrlénJ, DahlgrenJP, LoomisAK, LouthanAM. Biotic and anthropogenic forces rival climatic/abiotic factors in determining global plant population growth and fitness. Proc Natl Acad Sci USA, 2020, 117(2): 1107-1112

[37]

PoorterH, NavasML. Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol, 2003, 157(2): 175-198

[38]

QinM, ZhuCJ, YangJB, VatanparastM, SchleyR, LaiQ, ZhangDY, TuTY, KlitgårdBB, LiSJ, ZhangDX. Comparative analysis of complete plastid genome reveals powerful barcode regions for identifying wood of Dalbergia odorifera and D. tonkinensis (Leguminosae). J Syst Evol, 2022, 60(1): 73-84

[39]

QinGL, YangCR, ChenX, YangZD, YuSZ. Study on laws of growth and development of Dalbergia odor-ifera pods and seeds. Guangxi Sci, 2023, 30(2): 259-266

[40]

RaghavanRK, Townsend PetersonA, CobosME, GantaR, FoleyD. Current and future distribution of the lone star tick, Amblyomma americanum (L.) (Acari: Ixodidae) in North America. PLoS One, 2019, 14(1): e0209082

[41]

RootTL, PriceJT, HallKR, SchneiderSH, RosenzweigC, Alan PoundsJ. Fingerprints of global warming on wild animals and plants. Nature, 2003, 421(6918): 57-60

[42]

SánchezAC, RojasNB, BriceñoSB, GhoshS, GuzmánCT, OlivaM, GuzmanBK, LópezRS. Biogeographic distribution of Cedrela spp. genus in Peru using maxent modeling: a conservation and restoration approach. Diversity, 2021, 13(6): 261

[43]

SchmidtH, RadingerJ, TeschladeD, StollS. The role of spatial units in modelling freshwater fish distributions: Comparing a subcatchment and river network approach using maxent. Ecol Model, 2020, 418: 108937

[44]

TangT, ShindellD, SamsetBH, BoucherO, ForsterPM, HodnebrogØ, MyhreG, SillmannJ, VoulgarakisA, AndrewsT, FaluvegiG, FläschnerD, IversenT, KasoarM, KharinV, KirkevågA, LamarqueJF, OliviéD, RichardsonT, StjernCW, TakemuraT. Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols. Atmos Chem Phys, 2018, 18(11): 8439-8452

[45]

TheSN. A review on the medicinal plant Dalbergia odorifera species: phytochemistry and biological activity. Evid-Based Compl Alt, 2017

[46]

ThomasCD, CameronA, GreenRE, BakkenesM, BeaumontLJ, CollinghamYC, ErasmusBFN, De SiqueiraMF, GraingerA, HannahL, HughesL, HuntleyB, Van JaarsveldAS, MidgleyGF, MilesL, Ortega-HuertaMA, PetersonAT, PhillipsOL, WilliamsSE. Extinction risk from climate change. Nature, 2004, 427(6970): 145-148

[47]

ThuillerW, LavorelS, AraújoMB, SykesMT, PrenticeIC. Climate change threats to plant diversity in Europe. Proc Natl Acad Sci U S A, 2005, 102(23): 8245-8250

[48]

TianZP, JiangD, ZhangR, SuiY. Long-term climate simulation of CCSM40 and evaluation of its performance over east Asia and China. Chin J Atmos Sci, 2012, 36(3): 619-632

[49]

TianFX, DongBW, RobsonJ, SuttonR. Forced decadal changes in the East Asian summer monsoon: the roles of greenhouse gases and anthropogenic aerosols. Clim Dyn, 2018, 51(9): 3699-3715

[50]

TiwariS, RamosRD, PausataFSR, LeGrandeAN, GriffithsML, BeltramiH, WainerI, de VernalA, LitchmoreDT, ChandanD, PeltierWR, TaborCR. On the remote impacts of mid-Holocene Saharan vegetation on south American hydroclimate: a modeling intercomparison. Geophys Res Lett, 2023

[51]

UrbanMC, BocediG, HendryAP, MihoubJB, Pe’erG, SingerA, BridleJR, CrozierLG, De MeesterL, GodsoeW, GonzalezA, HellmannJJ, HoltRD, HuthA, JohstK, KrugCB, LeadleyPW, PalmerSF, PantelJH, SchmitzA, ZollnerPA, TravisJJ. Improving the forecast for biodiversity under climate change. Science, 2016, 353(6304): aad8466

[52]

VolisS. Complementarities of two existing intermediate conservation approaches. Plant Divers, 2017, 39(6): 379-382

[53]

VolisS. Conservation-oriented restoration - a two for one method to restore both threatened species and their habitats. Plant Divers, 2019, 41(2): 50-58

[54]

WangS, XieYChina species red list: Red List (Volume 1), 2004, Beijing, Higher Education Press

[55]

WangRL, LiQ, FengCH, ShiZP. Predicting potential ecological distribution of Locusta migratoria tibetensis in China using MaxEnt ecological niche modeling. Acta Ecol Sin, 2017, 37(24): 8556-8566

[56]

WarissHM, YiTS, WangH, ZhangR. Characterization of the complete chloroplast genome of Dalbergia odorifera (Leguminosae), a rare and critically endangered legume endemic to China. Conserv Genet Resour, 2018, 10(3): 527-530

[57]

WeiB, WangRL, HouK, WangXY, WuW. Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Glob Ecol Conserv, 2018, 16: e00477

[58]

YaoQD, LinQJ, ZhengZL. Study on Dalbergia odorifera suitable introduction regions in Fujian province. J Fujian For Sci Technol, 2012, 39(2): 89-94

[59]

YiYJ, ChengX, YangZF, ZhangSH. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. Riparia Lour) in Yunnan. China. Ecol Eng, 2016, 92: 260-269

[60]

YuM, JiaoLC, GuoJ, WiedenhoeftAC, HeT, JiangXM, YinYF. DNA barcoding of vouchered xylarium wood specimens of nine endangered Dalbergia species. Planta, 2017, 246(6): 1165-1176

[61]

ZengYW, LowBW, YeoDCJ. Novel methods to select environmental variables in MaxEnt: a case study using invasive crayfish. Ecol Model, 2016, 341: 5-13

[62]

ZhangP, GrenouilletG, DongXH, ZhengYC, LekS, ChangJB. Capturing response differences of species distribution to climate and human pressures by incorporating local adaptation: Implications for the conservation of a critically endangered species. J Environ Manag, 2021, 284: 111998

[63]

ZhaoY, CaoHL, XuWB, ChenGK, LianJY, DuYJ, MaKP. Contributions of precipitation and temperature to the large scale geographic distribution of fleshy-fruited plant species: Growth form matters. Sci Rep, 2018, 8(1): 17017

[64]

ZhaoZY, XiaoNW, ShenM, LiJS. Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: a case study with Quasipaa boulengeri in China. Sci Total Environ, 2022, 842: 156867

[65]

ZhouTJ, ZhangLX, LiHM. Changes in global land monsoon area and total rainfall accumulation over the last half century. Geophys Res Lett, 2008, 35(16): L16707

[66]

ZhouBQ, ZhaiPM, ChenY. Contribution of changes in synoptic-scale circulation patterns to the past summer precipitation regime shift in Eastern China. Geophys Res Lett, 2020

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

248

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/