Reduced growth of Qinghai spruce due to snow cover loss in high Asian elevations since the late 20th century

Jiachang Wei , Wenhui Tang , Feng Chen , Youping Chen , Mao Hu , Shijie Wang , Hechuan Wang , Xinfeng Wu , Heli Zhang

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 52

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 52 DOI: 10.1007/s11676-025-01848-5
Original Paper

Reduced growth of Qinghai spruce due to snow cover loss in high Asian elevations since the late 20th century

Author information +
History +
PDF

Abstract

Snowpack in the Northern Hemisphere is gradually disappearing due to rising global temperatures. Snowmelt water is a critical water resource for vegetation in the arid areas of the Northeast Tibetan Plateau. We used a random forest model to analyze the main factors influencing tree growth and using structural equation modelling to examine the pathways through which snowpack affected vegetation growth. The results show that soil moisture, controlled by snowmelt water, dominates the radial growth of Qinghai spruce (Picea crassifolia Kom.). At the same time, snow melt on vegetation is affected by both elevation and land cover. Atmospheric circulation patterns regulated by North Atlantic sea surface temperatures determine spring snowpack variability in this area. In future scenarios based on the Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations, snowpack will continue to decrease, presenting significant constraints to the growth of vegetation.

Keywords

Northeast Tibetan Plateau / Tree rings / Snowpack / Vegetation growth

Cite this article

Download citation ▾
Jiachang Wei, Wenhui Tang, Feng Chen, Youping Chen, Mao Hu, Shijie Wang, Hechuan Wang, Xinfeng Wu, Heli Zhang. Reduced growth of Qinghai spruce due to snow cover loss in high Asian elevations since the late 20th century. Journal of Forestry Research, 2025, 36(1): 52 DOI:10.1007/s11676-025-01848-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BarnettTP, AdamJC, LettenmaierDP. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 2005, 438(7066): 303-309

[2]

BeldaS, PipiaL, Morcillo-PallarésP, Rivera-CaicedoJP, AminE, De GraveC, VerrelstJ. DATimeS: a machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection. Environ Model Softw, 2020, 127 104666

[3]

BrownME, de BeursKM, MarshallM. Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26years. Remote Sens Environ, 2012, 126: 174-183

[4]

CaoHH, ChenF, HuM, HouTY, ZhaoXE, WangSJ, ZhangHL. Tree-ring insights into past and future streamflow variations in Beijing, northern China. Water Resour Res, 2025

[5]

ChenYP, ChenF, ZhangHL. A tree-ring-based precipitation reconstruction since 1760 CE from northeastern Tibetan Plateau. China Atmosphere, 2021, 12(4): 416

[6]

ChenF, ManWM, WangSJ, EsperJ, MekoD, BüntgenU, YuanYJ, HadadM, HuM, ZhaoXE, RoigFA, FangOY, ChenYP, ZhangHL, ShangHM, YuSL, LuoX, HeDM, ChenFH. Southeast Asian ecological dependency on Tibetan Plateau streamflow over the last millennium. Nat Geosci, 2023, 16(12): 1151-1158

[7]

ChenF, WangSJ, DongQJ, EsperJ, BüntgenU, MekoD, LinderholmHW, WangT, YueWP, ZhaoXE, HadadM, González-ReyesÁ, ChenFH. Role of Pacific Ocean climate in regulating runoff in the source areas of water transfer projects on the Pacific Rim. NPJ Clim Atmos Sci, 2024, 7: 153

[8]

ChenF, WangT, ZhaoXE, EsperJ, LjungqvistFC, BüntgenU, LinderholmHW, MekoD, XuHN, YueWP, WangSJ, YuanYJ, ZhengJY, PanW, RoigF, HadadM, HuM, WeiJC, ChenFH. Coupled Pacific Rim megadroughts contributed to the fall of the Ming Dynasty’s capital in 1644 CE. Sci Bull, 2024, 69(19): 3106-3114

[9]

Cook ER (1985) A time series analysis approach to tree ring standardization (Dendrochronology, Forestry, Dendroclimatology, Autoregressive Process). Dissertation, University of Arizona, Tucson

[10]

CoulthardBL, TouchanR, AnchukaitisKJ, MekoDM, SivrikayaF. Tree growth and vegetation activity at the ecosystem-scale in the eastern Mediterranean. Environ Res Lett, 2017, 12(8): 084008

[11]

CunyHE, RathgeberCBK, FrankD, FontiP, MäkinenH, PrislanP, RossiS, Del CastilloEM, CampeloF, VavrčíkH, CamareroJJ, BryukhanovaMV, JyskeT, GričarJ, GrycV, De LuisM, VieiraJ, ČufarK, KirdyanovAV, OberhuberW, TremlV, HuangJG, LiXX, SwidrakI, DeslauriersA, LiangEY, NöjdP, GruberA, NabaisC, MorinH, KrauseC, KingG, FournierM. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat Plants, 2015, 1: 15160

[12]

ErnakovichJG, HoppingKA, BerdanierAB, SimpsonRT, KachergisEJ, SteltzerH, WallensteinMD. Predicted responses of Arctic and alpine ecosystems to altered seasonality under climate change. Glob Chang Biol, 2014, 20(10): 3256-3269

[13]

EyringV, BonyS, MeehlGA, SeniorCA, StevensB, StoufferRJ, TaylorKE. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev, 2016, 9(5): 1937-1958

[14]

GaoS, LiangEY, LiuRS, BabstF, Julio CamareroJ, FuYH, PiaoSL, RossiS, ShenMG, WangT, PeñuelasJ. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat Ecol Evol, 2022, 6(4): 397-404

[15]

GazolA, CamareroJJ, Vicente-SerranoSM, Sánchez-SalgueroR, GutiérrezE, de LuisM, Sangüesa-BarredaG, NovakK, RozasV, TíscarPA, LinaresJC, Martín-HernándezN, Del CastilloEM, RibasM, García-GonzálezI, SillaF, CamisónA, GénovaM, OlanoJM, LongaresLA, HeviaA, Tomás-BurgueraM, Diego GalvánJ. Forest resilience to drought varies across biomes. Glob Chang Biol, 2018, 24(5): 2143-2158

[16]

GottliebAR, MankinJS. Evidence of human influence on Northern Hemisphere snow loss. Nature, 2024, 625(7994): 293-300

[17]

HigginsSI, ConradiT, MuhokoE. Shifts in vegetation activity of terrestrial ecosystems attributable to climate trends. Nat Geosci, 2023, 16(2): 147-153

[18]

HolmesR. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull, 1983, 43: 69-78

[19]

HuangJG, DeslauriersA, RossiS. Xylem formation can be modeled statistically as a function of primary growth and cambium activity. New Phytol, 2014, 203(3): 831-841

[20]

ImmerzeelWW, LutzAF, AndradeM, BahlA, BiemansH, BolchT, HydeS, BrumbyS, DaviesBJ, ElmoreAC, EmmerA, FengM, FernándezA, HaritashyaU, KargelJS, KoppesM, KraaijenbrinkPA, KulkarniAV, MayewskiPA, NepalS, PachecoP, PainterTH, PellicciottiF, RajaramH, RupperS, SinisaloA, ShresthaAB, ViviroliD, WadaY, XiaoC, YaoT, BaillieJM. Importance and vulnerability of the world’s water towers. Nature, 2020, 577(7790): 364-369

[21]

JiangLM, YangJW, ZhangC, WuSL, LiZ, DaiLY, LiXF, QiuYB. Daily snow water equivalent product with SMMR, SSM/I and SSMIS from 1980 to 2020 over China. Big Earth Data, 2022, 6(4): 420-434

[22]

KimJH, HwangT, YangY, SchaafCL, BooseE, MungerJW. Warming-induced earlier greenup leads to reduced stream discharge in a temperate mixed forest catchment. JGR Biogeosciences, 2018, 123(6): 1960-1975

[23]

KraaijenbrinkPDA, StigterEE, YaoTD, ImmerzeelWW. Climate change decisive for Asia’s snow meltwater supply. Nat Clim Change, 2021, 11(7): 591-597

[24]

LianX, PiaoSL, LiLZX, LiY, HuntingfordC, CiaisP, CescattiA, JanssensIA, PeñuelasJ, BuermannW, ChenAP, LiXY, MyneniRB, WangXH, WangYL, YangYT, ZengZZ, ZhangYQ, McVicarTR. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci Adv, 2020

[25]

MaXB, ShiYF, ShenYP, YangB. An analysis of climate changing trend in northwest China: Recent and historical periods. J Glaciol Geocryol, 2003

[26]

MankinJS, ViviroliD, SinghD, HoekstraAY, DiffenbaughNS. The potential for snow to supply human water demand in the present and future. Environ Res Lett, 2015, 10(11): 114016

[27]

MarkAF, KorstenAC, GuevaraDU, DickinsonKJM, Humar-MaegliT, MichelP, HalloySRP, LordJM, VennSE, MorganJW, WhighamPA, NielsenJA. Ecological responses to 52 years of experimental snow manipulation in high-alpine cushionfield, old man range, south-central New Zealand. Arct Antarct Alp Res, 2015, 47(4): 751-772

[28]

McDowellNG, AllenCD, Anderson-TeixeiraK, AukemaBH, Bond-LambertyB, ChiniL, ClarkJS, DietzeM, GrossiordC, Hanbury-BrownA, HurttGC, JacksonRB, JohnsonDJ, KueppersL, LichsteinJW, OgleK, PoulterB, PughTAM, SeidlR, TurnerMG, UriarteM, WalkerAP, XuCG. Pervasive shifts in forest dynamics in a changing world. Science, 2020

[29]

MehmoodK, Ahmad AneesS, RehmanA, PanS, TariqA, ZubairM, LiuQJ, RabbiF, KhanKA, LuoM. Exploring spatiotemporal dynamics of NDVI and climate-driven responses in ecosystems: Insights for sustainable management and climate resilience. Ecol Inform, 2024, 80 102532

[30]

Naegeli K (2021) ESA snow climate change initiative (snow_cci): Daily global snow cover fraction—snow on ground (SCFG) from AVHRR (1982–2019), version1.0

[31]

PashoE, Julio CamareroJ, Vicente-SerranoSM. Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis. Trees, 2012, 26(6): 1875-1886

[32]

PaudelKP, AndersenP. Response of rangeland vegetation to snow cover dynamics in Nepal Trans Himalaya. Clim Change, 2013, 117(1): 149-162

[33]

PengSS, PiaoSL, CiaisP, FangJY, WangXH. Change in winter snow depth and its impacts on vegetation in China. Glob Change Biol, 2010, 16(11): 3004-3013

[34]

PiaoSL, LiuQ, ChenAP, JanssensIA, FuYS, DaiJH, LiuLL, LianX, ShenMG, ZhuXL. Plant phenology and global climate change: current progresses and challenges. Glob Chang Biol, 2019, 25(6): 1922-1940

[35]

PotopováV, BoroneanţC, MožnýM, SoukupJ. Driving role of snow cover on soil moisture and drought development during the growing season in the Czech Republic. Int J Climatol, 2016, 36(11): 3741-3758

[36]

QianQF, JiaXJ, WuRG. On the interdecadal change in the interannual variation in autumn snow cover over the central eastern Tibetan Plateau in the mid-1990s. J Geophys Res Atmos, 2020

[37]

QinY, AbatzoglouJT, SiebertS, HuningLS, AghaKouchakA, MankinJS, HongCP, TongD, DavisSJ, MuellerND. Agricultural risks from changing snowmelt. Nat Clim Change, 2020, 10(5): 459-465

[38]

RossiS, MorinH, DeslauriersA. Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis. J Exp Bot, 2012, 63(5): 2117-2126

[39]

RossiS, GirardMJ, MorinH. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob Chang Biol, 2014, 20(7): 2261-2271

[40]

ShamanJ, TzipermanE. The effect of ENSO on Tibetan Plateau snow depth: a stationary wave teleconnection mechanism and implications for the south Asian monsoons. J Clim, 2005, 18(12): 2067-2079

[41]

ShenZL, WangSJ, ChenF, ZhangHL, ZhaoXE, ChenYP, HuM. Decreasing productivity of pine forests on the southern edge of the Mongolian Plateau as indicated by tree rings. J Forestry Res, 2024, 35(1): 74

[42]

SippelS, ZscheischlerJ, ReichsteinM. Ecosystem impacts of climate extremes crucially depend on the timing. Proc Natl Acad Sci USA, 2016, 113(21): 5768-5770

[43]

TrnkaM, BrázdilR, BalekJ, SemerádováD, HlavinkaP, MožnýM, ŠtěpánekP, DobrovolnýP, ZahradníčekP, DubrovskýM, EitzingerJ, FuchsB, SvobodaM, HayesM, ŽaludZ. Drivers of soil drying in the Czech republic between 1961 and 2012. Int J Climatol, 2015, 35(9): 2664-2675

[44]

TrujilloE, MolotchNP, GouldenML, KellyAE, BalesRC. Elevation-dependent influence of snow accumulation on forest greening. Nat Geosci, 2012, 5(10): 705-709

[45]

WangK, ZhangL, QiuYB, JiL, TianF, WangCZ, WangZY. Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau. Int J Digit Earth, 2015, 8(1): 58-75

[46]

WangCH, YangK, LiYL, WuD, BoY. Impacts of spatiotemporal anomalies of Tibetan Plateau snow cover on summer precipitation in Eastern China. J Clim, 2017, 30(3): 885-903

[47]

WangJL, YangB, LjungqvistFC, LuterbacherJ, OsbornTJ, BriffaKR, ZoritaE. Internal and external forcing of multidecadal Atlantic climate variability over the past 1, 200 years. Nat Geosci, 2017, 10(7): 512-517

[48]

WangXY, WangT, GuoH, LiuD, ZhaoYT, ZhangTT, LiuQ, PiaoSL. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Glob Chang Biol, 2018, 24(4): 1651-1662

[49]

WangXY, WuCY, PengDL, GonsamoA, LiuZJ. Snow cover phenology affects alpine vegetation growth dynamics on the Tibetan Plateau: Satellite observed evidence, impacts of different biomes, and climate drivers. Agric for Meteor, 2018, 256: 61-74

[50]

WigleyTML, BriffaKR, JonesPD. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Climate Appl Meteor, 1984, 23(2): 201-213

[51]

WuZW, ZhangP, ChenH, LiY. Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency?. Clim Dyn, 2016, 46(11): 3405-3417

[52]

WuXF, TangWH, ChenF, WangSJ, BakhtiyorovZ, LiuYX, GuanYS. Attribution and risk projections of hydrological drought over water-scarce central Asia. Earth’s Future, 2025

[53]

XiaoZX, DuanAM. Impacts of Tibetan Plateau snow cover on the interannual variability of the east Asian summer monsoon. J Clim, 2016, 29(23): 8495-8514

[54]

YanWB, YangFL, ZhouJ, WuRD. Droughts force temporal change and spatial migration of vegetation phenology in the northern Hemisphere. Agric for Meteor, 2023, 341 109685

[55]

YangK, WangCH. Frozen soil advances the effect of spring snow cover anomalies on subsequent precipitation over the Tibetan Plateau. J Hydrometeorol, 2023, 24(2): 335-350

[56]

YaoTD, BolchT, ChenDL, GaoJ, ImmerzeelW, PiaoSL, SuFG, ThompsonL, WadaY, WangL, WangT, WuGJ, XuBQ, YangW, ZhangGQ, ZhaoP. The imbalance of the Asian water tower. Nat Rev Earth Environ, 2022, 3(10): 618-632

[57]

YeKH, WuRG, LiuY. Interdecadal change of Eurasian snow, surface temperature, and atmospheric circulation in the late 1980s. J Geophys Res Atmos, 2015, 120(7): 2738-2753

[58]

YueWP, ChenF, TorbensonMCA, ZhaoXE, ZhengYH, XuY, HuM, WangSJ, HouTY, ZhangHL, ChenYP. Late Ming Dynasty weak monsoon induced a harmonized megadrought across north-to-South China. Commun Earth Environ, 2024, 5: 439

[59]

ZengZQ, WuWX, GeQS, LiZL, WangXY, ZhouY, ZhangZT, LiYM, HuangH, LiuGX, PeñuelasJ. Legacy effects of spring phenology on vegetation growth under preseason meteorological drought in the Northern Hemisphere. Agric for Meteor, 2021, 310 108630

[60]

ZhangXL, ManzanedoRD, D’OrangevilleL, RademacherTT, LiJX, BaiXP, HouMT, ChenZJ, ZouFH, SongFB, PedersonN. Snowmelt and early to mid-growing season water availability augment tree growth during rapid warming in southern Asian boreal forests. Glob Chang Biol, 2019, 25(10): 3462-3471

[61]

ZhangTW, SongJH, FanYT, LiuY, YuSL, GuoD, HouTH, GuoKL. Vegetation index research on the basis of tree-ring data: current status and prospects. Forests, 2023, 14(10): 2016

[62]

ZhaoP, ZhouZJ, LiuJP. Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and east Asian summer monsoon rainfall: an observational investigation. J Clim, 2007, 20(15): 3942-3955

[63]

ZhaoL, DaiAG, DongB. Changes in global vegetation activity and its driving factors during 1982–2013. Agric for Meteor, 2018, 249: 198-209

[64]

ZhaoXE, FangKY, ChenF, MartínH, RoigFA. Reconstructed Jing River streamflow from western China: a 399-year perspective for hydrological changes in the Loess Plateau. J Hydrol, 2023, 621 129573

[65]

ZhaoXE, ChenF, SeimA, HuM, AkkemikÜ, KopabayevaA, MazarzhanovaK, ZhangRB, MaisupovaB, KirillovV, MambetovB, YuSL, HeQ, DosmanbetovD, KelgenbayevN. Global warming leads to growth increase in Pinus sylvestris in the Kazakh steppe. For Ecol Manag, 2024, 553 121635

RIGHTS & PERMISSIONS

Northeast Forestry University

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/