A review: sustainable forestry through biological control—the application of entomopathogenic nematodes

Oluwatosin Samuel Ibitoye , Olabisi Hannah Ayeni , Oluwadamilola Aduragbemi Ayanniyi , Damola Muritala , Israel Arabambi , Oluwatobi Kolejo , Olubusayo Omotola Adekoya , Oluwasogo Abimbola Adenika , Emmanuel Ayanniyi Aremu

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 42

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) :42 DOI: 10.1007/s11676-025-01841-y
Review Article
review-article

A review: sustainable forestry through biological control—the application of entomopathogenic nematodes

Author information +
History +
PDF

Abstract

Entomopathogenic nematodes (EPNs) represent a promising biological control strategy for managing insect pest populations, offering an environmentally sustainable alternative to conventional chemical pesticides. This review examines the application of EPNs in forestry, highlighting their biological and ecological characteristics, mechanisms of action, and efficacy against key forest pests. By exploring various methods of EPN application, including soil injection, foliar spray, and trunk injection, practical challenges and potential solutions for effective implementation are assessed. Case studies demonstrate successful use of EPNs in controlling pests such as bark beetles, wood borers, and root weevils, underscoring their potential for integration into integrated pest management (IPM) programs. Despite current limitations, including environmental sensitivity and application constraints, ongoing research and technological advancements continue to enhance the efficacy and reliability of EPNs. This review underscores the importance of EPNs in sustainable forestry practices and calls for further research to optimize their use and to address existing challenges, ultimately contributing to healthier forest ecosystems and reduced reliance on chemical pesticides.

Keywords

Biological control / Pest management / Forestry / Nematodes / Sustainability

Cite this article

Download citation ▾
Oluwatosin Samuel Ibitoye, Olabisi Hannah Ayeni, Oluwadamilola Aduragbemi Ayanniyi, Damola Muritala, Israel Arabambi, Oluwatobi Kolejo, Olubusayo Omotola Adekoya, Oluwasogo Abimbola Adenika, Emmanuel Ayanniyi Aremu. A review: sustainable forestry through biological control—the application of entomopathogenic nematodes. Journal of Forestry Research, 2025, 36(1): 42 DOI:10.1007/s11676-025-01841-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abate BA, Wingfield MJ, Slippers B, Hurley BP. Commercialisation of entomopathogenic nematodes: should import regulations be revised?. Biocontrol Sci Technol, 2017, 27(2): 149-168

[2]

Abd-Elgawad MMM. Xenorhabdus spp. an overview of the useful facets of mutualistic bacteria of entomopathogenic nematodes. Life, 2022, 12(9): 1360

[3]

Abd-Elgawad MM (2017) Status of entomopathogenic nematodes in integrated pest management strategies in Egypt. In: Biocontrol agents: entomopathogenic and slug parasitic nematodes. Wallingford UK: CABI. https://doi.org/10.1079/9781786390004.0473

[4]

Alwaneen WS, Tahir M, Avery PB, Wakil W, Kavallieratos NG, Eleftheriadou N, Boukouvala MC, Rasool KG, Husain M, Aldawood AS. Initial evaluation of the entomopathogenic fungi Beauveria bassiana and Metarhizium robertsii, and the entomopathogenic nematode Heterorhabditis bacteriophora, individually and in combination against the noxious Helicoverpa armigera (Lepidoptera: Noctuidae). Agronomy, 2024, 14(71395

[5]

Arthurs SP, Bruck DJ (2017) Microbial control of nursery ornamental and landscape plant pests. In: Microbial Control of Insect and Mite Pests. Academic Press. https://doi.org/10.1016/B978-0-12-803527-6.00024-X

[6]

Ashok Kumar CT, Remadevi OK, Aminu-Taiwo BR. Chakravarthy AK. Pest management in tropical forests. Innovative pest management approaches for the 21st century: harnessing automated unmanned technologies, 2020, Singapore, Springer Singapore227-254

[7]

Askary TH, Ahmad MJ. Abd-Elgawad MMM, Askary TH, Coupland J. Entomopathogenic nematodes: mass production, formulation and application.. Biocontrol agents: entomopathogenic and slug parasitic nematodes, 2017, UK, CABI261286

[8]

Askary TH, Jamal Ahmad M, Wani AR, Mohiddin S, Sofi MA. Behavioural ecology of entomopathogenic nematodes, Steinernema and Heterorhabditis for insect biocontrol. Sustain Agric Rev, 2018, 31: 425-441

[9]

Atwa AA. Entomopathogenic nematodes as biopesticides. Basic Appl Aspec Biopest, 2014

[10]

Atwa AA, Borgio JF, Sahayaraj K, Susurluk IA. Mode of action and field efficacy of entomopathogenic nematodes. Microbial insecticides principles and applications, 2011, Nova Science Publishers Inc, USA

[11]

Baïmey H, Zadji L, Afouda L, Fanou A, Kotchofa R, Decraemer W. Searching for better methodologies for successful control of termites using entomopathogenic nematodes. Nematol-Conc Diagn Control, 2017

[12]

Baker BP, Green TA, Loker AJ. Biological control and integrated pest management in organic and conventional systems. Biol Contr, 2020, 140: 104095

[13]

Belien T. Entomopathogenic nematodes as biocontrol agents of insect pests in orchards. CABI Rev, 2019

[14]

Bohlmann H. Introductory chapter on the basic biology of cyst nematodes. Adv Bot Res, 2015, 73: 33-59

[15]

Campos-Herrera R. Nematode pathogenesis of insects and other pests: ecology and applied technologies for sustainable plant and crop protection, 2015, Cham, Springer International Publishing

[16]

Daraban GM, Hlihor RM, Suteu D. Pesticides vs. biopesticides: from pest management to toxicity and impacts on the environment and human health. Toxics, 2023, 11(12): 983

[17]

Day KR, Leather SR. Threats to forestry by insect pests in Europe. For inSects, 1997, 18: 177-205

[18]

Denoirjean T, Belhassen D, Doury G, Ameline A, Werrie PY, Fauconnier ML, Hance T, Le Goff GJ. Essential oil trunk injection into orchard trees: consequences on the performance and preference of hemipteran pests. J Econ Entomol, 2023, 116(2389-398

[19]

Devi G. Entomopathogenic nematodes and their symbiotic bacteria: microorganism-host interactions: a review. Int J Environ Clim Change, 2023, 13(9): 3443-3455

[20]

Devi G. Influence of abiotic factors on efficacy of entomopathogenic nematodes. Int J Plant Soil Sci, 2024, 36(3): 283-290

[21]

Dillman AR, Guillermin ML, Lee JH, Kim B, Sternberg PW, Hallem EA. Olfaction shapes host-parasite interactions in parasitic nematodes. Proc Natl Acad Sci USA, 2012, 109(35): E2324-E2333

[22]

Dillon AB, Foster A, Williams CD, Griffin CT. Environmental safety of entomopathogenic nematodes–Effects on abundance, diversity and community structure of non-target beetles in a forest ecosystem. Biol Contr, 2012, 63(2): 107-114

[23]

El Khoury Y, Noujeim E, Ravlić J, Oreste M, Addante R, Nemer N, Tarasco E. The effect of entomopathogenic nematodes and fungi against four xylophagous pests. Biocontrol Sci Technol, 2020, 30(9): 983-995

[24]

Elbrense H, Elmasry AMA, Seleiman MF, Al-Harbi MS, Abd El-Raheem AM. Can symbiotic bacteria (Xenorhabdus and Photorhabdus) be more efficient than their entomopathogenic nematodes against Pieris rapae and Pentodon algerinus larvae?. Biology, 2021, 10(10): 999

[25]

Erdoğan H, Ulu TC. Evaluating a portable method and two irrigation drippers for field application of entomopathogenic nematodes. Yüzüncü Yıl Üniv Tarım Bilimleri Dergisi, 2024, 34(1138-150

[26]

Fernanda Achinelly M, Camino N, Eliceche D, Salas A, Rusconi M. Abd-Elgawad MMM, Askary TH, Coupland J. Status of entomopathogenic nematodes in integrated pest management strategies in Argentina.. Biocontrol agents: entomopathogenic and slug parasitic nematodes, 2017, UK, CABI327347

[27]

Gang SS, Hallem EA. Mechanisms of host seeking by parasitic nematodes. Mol Biochem Parasitol, 2016, 208(1): 23-32

[28]

Ghoneim K, Hamadah K. Compatibility of entomopathogenic nematodes with agrochemicals and biocontrol potential of their combinations against insect pests: an updated review. Egypt Acad J Biol Sci A Entomol, 2024, 17(2): 107-171

[29]

Glazer I, Shapiro-Ilan DI. Itamar Glazer D, Shapiro-llan PW. Genetic Improvement of Beneficial Organisms. Nematodes as Model Organisms, 2022, GB, CABI346364

[30]

Glazer I, Santoiemma G, Battisti A, De Luca F, Fanelli E, Troccoli A, Tarasco E, Sacchi S, Bianchi A, Gilioli G, Gherardo P, Mori N. Invasion of Popillia japonica in Lombardy, Italy: interactions with soil entomopathogenic nematodes and native grubs. Agric for Entomol, 2022, 24(4): 600-608

[31]

Grewal PS, Abrol DP, Shankar U. Entomopathogenic nematodes as tools in integrated pest management. Integ Pest Manag Princ Pract, 2012

[32]

Grujić N, Nježić B, Anifantis AS, Tarasco E. Biocontrol potential of some entomopathogenic nematodes againststelidota geminata (say). Redia, 2020, 103: 35-39

[33]

Grujić N, Graora D, Nježić B, Bosančić B, Tarasco E. Virulence of entomopathogenic nematodes to three soft scale insect species. Redia, 2021, 104: 193-197

[34]

Gulcu B, Cimen H, Raja RK, Hazir S. Entomopathogenic nematodes and their mutualistic bacteria: their ecology and application as microbial control agents. Biopestic Int, 2017, 13(2): 79-112

[35]

Hiltpold I, Hibbard BE. Indirect root defenses cause induced fitness costs in Bt-resistant western corn rootworm. J Econ Entomol, 2018, 111(5): 2349-2358

[36]

Hussaini SS. Abd-Elgawad MMM, Askary TH, Coupland J. Entomopathogenic nematodes: ecology, diversity and geographical distribution.. Biocontrol agents: entomopathogenic and slug parasitic nematodes, 2017, UK, CABI88142

[37]

Jasrotia P, Kumari P, Malik K, Kashyap PL, Kumar S, Bhardwaj AK, Singh GP. Conservation agriculture based crop management practices impact diversity and population dynamics of the insect-pests and their natural enemies in agroecosystems. Front Sustain Food Syst, 2023, 7: 1173048

[38]

Kapranas A, Malone B, Quinn S, Mc Namara L, Williams CD, O’Tuama P, Peters A, Griffin CT. Efficacy of entomopathogenic nematodes for control of large pine weevil, Hylobius abietis: effects of soil type, pest density and spatial distribution. J Pest Sci, 2017, 90(2): 495-505

[39]

Karthik Raja R, Arun A, Touray M, Hazal Gulsen S, Cimen H, Gulcu B, Hazir C, Aiswarya D, Ulug D, Cakmak I, Kaya HK, Hazir S. Antagonists and defense mechanisms of entomopathogenic nematodes and their mutualistic bacteria. Biol Contr, 2021, 152: 104452

[40]

Kaul V, Shankar U (2017) Utilization of entomopathogenic nematodes in insect pest management. Technological Innovations in Integrated Pest Management Biorational and Ecological Perspective

[41]

Klassen W. Dyck VA, Hendrichs J, Robinson AS. Area-wide integrated pest management and the sterile insect technique. sterile insect technique, 2005, Berlin/Heidelberg, Springer-Verlag39-68

[42]

Koppenhöfer AM, Shapiro-Ilan DI, Hiltpold I. Entomopathogenic nematodes in sustainable food production. Front Sustain Food Syst, 2020, 4: 125

[43]

Kumar D, Kumari P, Kamboj R, Kumar A, Banakar P, Kumar V. Entomopathogenic nematodes as potential and effective biocontrol agents against cutworms, Agrotis spp present and future scenario. Egypt J Biol Pest Control, 2022, 32(142

[44]

Labaude S, Griffin CT. Transmission success of entomopathogenic nematodes used in pest control. InSects, 2018, 9(272

[45]

Lewis EE, Gaugler R, Harrison R. Entomopathogenic nematode host finding: response to host contact cues by cruise and ambush foragers. Parasitology, 1992, 105(2309-315

[46]

Lewis EE, Campbell J, Griffin C, Kaya H, Peters A. Behavioral ecology of entomopathogenic nematodes. Biol Contr, 2006, 38(166-79

[47]

Llácer E, Martínez de Altube MM, Jacas JA. Evaluation of the efficacy of Steinernema carpocapsae in a chitosan formulation against the red palm weevil, Rhynchophorus ferrugineus. Phoenix Canariensis Biocontrol, 2009, 54(4): 559-565

[48]

Mamiya Y, Shoji T. Histological observations by light and scanning electron microscopy of the Japanese pine sawyer, Monochamus alternatus, infected with the entomopathogenic nematode. Steinernema Carpocapsae Nematol, 2017, 19(5): 597-603

[49]

Mazza G, Paoli F, Strangi A, Torrini G, Marianelli L, Peverieri GS, Binazzi F, Bosio G, Sacchi S, Benvenuti C, Venanzio D. Hexamermis popilliae n. sp. (Nematoda: Mermithidae) parasitizing the Japanese beetle Popillia japonica Newman (Coleoptera: Scarabaeidae) in Italy. Syst Parasitol, 2017, 94: 915-926

[50]

Mc Namara L, Kapranas A, Williams CD, O’Tuama P, Kavanagh K, Griffin CT. Efficacy of entomopathogenic fungi against large pine weevil, Hylobius abietis, and their additive effects when combined with entomopathogenic nematodes. J Pest Sci, 2018, 91(4): 1407-1419

[51]

Mori AS, Lertzman KP, Gustafsson L. Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. J Appl Ecol, 2017, 54(1): 12-27

[52]

Nouh GM. Effect of temperature and soil moisture on the efficacy of indigenous and imported strains of the entomopathogenic nematode, Heterorhabditis sp. against the black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera/Noctuidae). Egypt J Biol Pest Contr, 2022, 32(1): 28

[53]

Nyamwasa I, Li K, Rutikanga A, Rukazambuga DNT, Zhang S, Yin J, Ya-zhong C, Zhang XX, Sun X. Soil insect crop pests and their integrated management in East Africa: a review. Crop Prot, 2018, 106: 163-176

[54]

Peters A. Application and commercialization of nematodes. Appl Microbiol Biotechnol, 2013, 97(146181-6188

[55]

Purti JRRS, Rolania K. Biological control of coleopteran pests. Int J Bio Resour Stress Manag, 2018, 9(3): 421-434

[56]

Půža V, Tarasco E. Interactions between entomopathogenic fungi and entomopathogenic nematodes. Microorganisms, 2023, 11(1): 163

[57]

Rakubu IL, Katumanyane A, Hurley BP. Screening five local entomopathogenic nematode species for their virulence against pupae of the Eucalyptus snout beetle, Gonipterus sp. n. 2, under laboratory conditions. Crop Prot, 2024, 176: 106500

[58]

Rehayem M, Noujeim E, Nemer N, Pagès S, Ogier JC, Thaler O, Duvic B. New insights in biocontrol strategy against Cephalcia tannourinensis, the principal insect defoliator of Lebanese cedars. For Sci, 2018, 64(4383-391

[59]

Saleh M, El-Wakeil N, Elbehery H, Gaafar N, Fahim S (2019) Biological pest control for sustainable agriculture in Egypt. Sustainability of Agricultural Environment in Egypt: Part II: Soil-Water-Plant Nexus 145–188. https://doi.org/10.1007/698_2017_162

[60]

Sandhi RK, Shapiro-Ilan D, Ivie M, Reddy GVP. Biocontrol of wireworms (Coleoptera: Elateridae) using entomopathogenic nematodes: the impact of infected host cadaver application and soil characteristics. Environ Entomol, 2021, 50(4868-877

[61]

Shakeel Q, Shakeel M, Raheel M, Ali S, Ashraf W, Iftikhar Y, Bajwa RT. Surajit De Mandal G, Ramkumar SK, Jin F. Entomopathogenic nematodes (EPNs): A green strategy for management of insect-pests of crops. New and future development in biopesticide research: biotechnological exploration, 2022, Singapore, Springer Nature Singapore115135

[62]

Shapiro-Ilan DI, Morales-Ramos JA, Rojas MG. In vivo production of entomopathogenic nematodes. Methods Mol Biol, 2016, 1477: 137-158

[63]

Shapiro-Ilan D, Hazir S, Glazer I. Marcos Kogan EA. Advances in use of entomopathogenic nematodes in integrated pest management. Integrated management of insect pests: Current and future developments, 2019Burleigh Dodds Science Publishing649678

[64]

Sharma N, Bhandari AS, Shukla PK. Sharma N, Bhandari AS, Sharma N, Bhandari A. Entomopathogenic biopesticides. Bio-management of Postharvest Diseases and Mycotoxigenic Fungi, 2020, Boca Raton, FL, CRC Press121144

[65]

Shields EJ. Campos-Herrera R. Utilizing persistent entomopathogenic nematodes in a conservation or a more classical biological control approach. Nematode pathogenesis of insects and other pests: ecology and applied technologies for sustainable plant and crop protection, 2015, Cham, Springer International Publishing165184

[66]

Singh AK, Kumar M, Amit Ahuja BK, Vinay KK, Kommu ST, Paschapur AU, Jeevan B, Mishra KK, Meena RP, Parihar M. Entomopathogenic nematodes. Biopesticides, 2022Elsevier7392

[67]

Skrzecz I, Sierpińska A, Tumialis D. Entomopathogens in the integrated management of forest insects: from science to practice. Pest Manag Sci, 2024, 80(6): 2503-2514

[68]

Stevens G, Lewis E. Abd-Elgawad MMM, Askary TH, Coupland J. Status of entomopathogenic nematodes in integrated pest management strategies in the USA.. Biocontrol agents: entomopathogenic and slug parasitic nematodes, 2017, UK, CABI289311

[69]

Sujithra M, Rajkumar M, Mhatre PH, Guru-Pirasanna-Pandi G. Biocontrol potential of native entomopathogenic nematodes against coconut Rhinoceros beetle, Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae) under laboratory conditions. Egypt J Biol Pest Contr, 2022, 32(1): 88

[70]

Sun B, Zhang X, Song Li, Zheng L, Wei X, Xinghui Gu, Cui Y, Bin Hu, Yoshiga T, Abd-Elgawad MM, Ruan W. Evaluation of indigenous entomopathogenic nematodes in Southwest China as potential biocontrol agents against Spodoptera litura (Lepidoptera: Noctuidae). J Nematol, 2021, 53(11-17

[71]

Tarasco E, Fanelli E, Salvemini C, El-Khoury Y, Troccoli A, Vovlas A, De Luca F. Entomopathogenic nematodes and their symbiotic bacteria: from genes to field uses. Front Insect Sci, 2023, 3: 1195254

[72]

Triggiani O, Tarasco E. Evaluation of the effects of autochthonous and commercial isolates of Steinernematidae and Heterorhabditidae on Rhynchophorus ferrugineus. Bull Insectol, 2011, 64(2): 175-180

[73]

Vashisth S, Chandel YS, Sharma PK. Entomopathogenic nematodes—a review. Agri Rev, 2013, 34(3163-175

[74]

Williams CD. Shapiro-llan DI, Lewis EE. Forest applications of entomopathogenic nematodes. Entomopathogenic Nematodes as Biological Control Agents, 2024, GB, CABI436453

[75]

Williams CD, Dillon AB, Harvey CD, Hennessy R, Namara LM, Griffin CT. Control of a major pest of forestry, Hylobius abietis, with entomopathogenic nematodes and fungi using eradicant and prophylactic strategies. For Ecol Manag, 2013, 305: 212-222

[76]

Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B. Planted forest health: the need for a global strategy. Science, 2015, 349(6250): 832-836

[77]

Wu HB, Gong QT, Fan K, Sun RH, Xu YY, Zhang KP. Synergistic effect of entomopathogenic nematodes and thiamethoxam in controlling Bradysia odoriphaga Yang and Zhang (Diptera: Sciaridae). Biol Contr, 2017, 111: 53-60

RIGHTS & PERMISSIONS

Northeast Forestry University

PDF

39

Accesses

0

Citation

Detail

Sections
Recommended

/