Pathfinder: a tool for operational planning of forest regeneration on clearcuts

Linnea J. Hansson , Anders Rowell , Mikael Rönnqvist , Patrik Flisberg , Fredrik Johansson , Rasmus Sörensen , Morgan Rossander , Petrus Jönsson

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 47

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) :47 DOI: 10.1007/s11676-025-01834-x
Original Paper
research-article

Pathfinder: a tool for operational planning of forest regeneration on clearcuts

Author information +
History +
PDF

Abstract

Effective forest regeneration is essential for sustainable forestry practices. In Sweden, mechanical site preparation and manual planting is the dominating method, but sourcing labour for the physically demanding work is difficult. An autonomous scarifying and planting system (Autoplant) could meet the requirements of the forest industry and, for this, a tool for regeneration planning and routing is needed. The tool, Pathfinder, plans the regeneration and routes based on the harvested production (hpr) files, soil moisture and parent material maps, no-go areas (for culture or nature conservation), digital elevation models (DEM), and machine data (e.g., working width, critical slope, time taken for different turn angles). The overall planting solution is either a set of capacity constrained routes or a continuous route and could be used for any planting machine as well as for traditional scarifiers as disc trenchers or mounders pulled by forwarders. Pathfinder was tested on eleven regeneration areas throughout Sweden, both with continuous routes and routes based on a carrying capacity of 1500 seedlings. The net operation area, species and seedling density suggestions were deemed relevant by expert judgement in the field. The routes provided by Pathfinder were compared with solutions given by two experienced drivers and a third solution based on the actual soil scarification at the site. Total driving distance did not differ significantly between the suggestions, but Pathfinder included less side-slope driving on steep slopes (≥ 27% or 15°) and medium slopes (15–27%). The chosen threshold value for steep slopes (where side-slope driving should be avoided) affects the routing, and a lower threshold means more turning and longer driving distance. Pathfinder is not only a tool for routing of planting machines, but also helps in planning of traditional regeneration by providing a more correct net area and tree species suggestions based on the growth of the previous stand. It also diminishes the risk of severe soil disturbance by excluding the wettest area in the planning.

Keywords

Routing / Site preparation / Planting / Operational planning / Optimization

Cite this article

Download citation ▾
Linnea J. Hansson, Anders Rowell, Mikael Rönnqvist, Patrik Flisberg, Fredrik Johansson, Rasmus Sörensen, Morgan Rossander, Petrus Jönsson. Pathfinder: a tool for operational planning of forest regeneration on clearcuts. Journal of Forestry Research, 2025, 36(1): 47 DOI:10.1007/s11676-025-01834-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anon (2021a) StanForD 2010: modern communication with forest machines. Technical report, Skogforsk, Uppsala

[2]

Anon (2021b) Soil Types [parent material maps] 1:25 000-1:100 000: Geological Survey of Sweden

[3]

Audy JF, Rönnqvist M, D’Amours S, Yahiaoui AE. Planning methods and decision support systems in vehicle routing problems for timber transportation: a review. Int J For Eng, 2023, 34(2): 143-167

[4]

Flisberg P, Forsberg M, Rönnqvist M. Optimization based planning tools for routing of forwarders at harvest areas. Can J For Res, 2007, 37(11): 2153-2163

[5]

Flisberg P, Rönnqvist M, Willén E, Frisk M, Friberg G. Spatial optimization of ground-based primary extraction routes using the BestWay decision support system. Can J For Res, 2021, 51(5): 675-691

[6]

Flisberg P, Rönnqvist M, Willén E, Forsmark MV, Davidsson A. Optimized locations of landings in forest operations. Can J For Res, 2022, 52(1): 59-69

[7]

Forsmark V, Johannesson T (2020) Skogsvårdsföretagens rekrytering: förusättningar, nuläge och konsekvenser [Silvicultural companies recruitment]. Arbetsrapport 1039–2020, Skogforsk, Uppsala, pp 32. (in Swedish)

[8]

Friberg G, Jacobson S, Möller JJ, Bhuiyan N, Willén E (2019) Föryngringsplanering med hjälp av skördarinformation och geodata [Regeneration planning using harvester information and geodata]. Arbetsrapport 1002–2019, Skogforsk, Uppsala, pp 16. (in Swedish)

[9]

Hägglund B, Lundmark JE. Site index estimation by means of site properties Scots pine and Norway spruce in Sweden. Studia Forestalia Suecica, 1977, 138: 38

[10]

Hansson LJ, Forsmark V, Flisberg P, Rönnqvist M, Mörk A, Jönsson P. A decision support tool for forwarding operations with sequence-dependent loading. Can J For Res, 2022, 52(12): 1513-1526

[11]

Hansson LJ, Sten G, Rossander M, Lideskog H, Manner J, van Westendorp R, Li SY, Eriksson A, Wallner A, Rönnqvist M, Flisberg P, Edlund B, Möller B, Karlberg M. Autoplant—autonomous site preparation and tree planting for a sustainable bioeconomy. Forests, 2024, 15(2263

[12]

Holmström E, Nikander J, Backman J, Väätäinen K, Uusitalo J, Jylhä P. A multi-objective optimization strategy for timber forwarding in cut-to-length harvesting operations. Int J For Eng, 2023, 34(2267-283

[13]

Hosseini A, Lindroos O, Wadbro E. A holistic optimization framework for forest machine trail network design accounting for multiple objectives and machines. Can J For Res, 2019, 49(2): 111-120

[14]

Hosseini A, Wadbro E, Ngoc Do D, Lindroos O. A scenario-based metaheuristic and optimization framework for cost-effective machine-trail network design in forestry. Comput Electron Agric, 2023, 212 108059

[15]

Malmberg CE, Hansen R, Svensson A (1980) Körning i brant terräng [Driving in steep terrain]. Forskningsstiftelsen Skogsarbeten, Oskarshamn. (in Swedish)

[16]

Möller JJ, Arlinger J, Barth A, Bhuiyan N, Hannrup B (2011) Ett system för beräkning och återföring av skördarbaserad information till skogliga register-och planeringssystem [A system for calculation and feedback of harvester-based information to forestry planning systems]. Arbetsrapport 2011-756, Skogforsk, Uppsala, pp 55. (in Swedish)

[17]

Offenbacher C (2024) Segmentation Algorithm. Technical Report, Skogforsk, Uppsala, pp 14

[18]

Olsson B, Ledwith M (2020) National Land Cover Database (NMD) - product description. Swedish Environmental Protection Agency, Stockholm

[19]

Ovaskainen H, Riekki K. Computation of strip road networks based on harvester location data. Forests, 2022, 13(5): 782

[20]

Ramantswana M, Guerra SPS, Ersson BT. Advances in the mechanization of regenerating plantation forests: a review. Curr For Rep, 2020, 6(2143-158

[21]

Sörensen R, Johansson F, Gålnander H (2023) Ökad skogsproduktion och förbättrad miljöhänsyn: genom anpassning till lokala förutsättningar [Increased forest production and improved conservation measures: through adaptation to local conditions]. Arbetsrapport 1175-2023, Skogforsk, Uppsala, pp 67. (in Swedish)

[22]

Swedish Forest Agency (2024) Nedladdning av geodata [Download Geo Data]. https://www.skogsstyrelsen.se/sjalvservice/karttjanster/geodatatjanster/nerladdning-av-geodata/. Accessed on 2024

[23]

Willén E, Johansson F, Jacobson S, Keskitalo C, Friberg G (2021) Kartering av skog på felaktig ståndort—Studie med nationellt tillgängliga geodata [Mapping of forests with improper site indexes - study using nationally available geodata]. Arbetsrapport 1091- 2021, Skogforsk, Uppsala, pp 37. (in Swedish)

RIGHTS & PERMISSIONS

The Author(s)

PDF

26

Accesses

0

Citation

Detail

Sections
Recommended

/