Afforestation boosted gross primary productivity of China: evidence from remote sensing

Wei Yan , Hesong Wang , Chao Jiang , Osbert Jianxin Sun , Jianmin Chu , Anzhi Zhang

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 40

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) :40 DOI: 10.1007/s11676-025-01828-9
Original Paper
research-article

Afforestation boosted gross primary productivity of China: evidence from remote sensing

Author information +
History +
PDF

Abstract

Enhancing the carbon sink of terrestrial ecosystems is an essential nature-based solution to mitigate global warming and achieve the target of carbon neutrality. Over recent decades, China has launched a series of long-running and large-scale ambitious forestation projects. However, there is still a lack of year-to-year evaluation on the effects of afforestation on carbon sequestration. Satellite remote sensing provides continuous observations of vegetation dynamics and land use and land cover change, is becoming a practical tool to evaluate the changes of vegetation productivity driven by afforestation. Here, a spatially-explicit analysis was conducted by combining Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and three up-to-date remote sensing gross primary productivity (GPP) datasets of China. The results showed that the generated afforestation maps have similar spatial distribution with the national forest inventory data at the provincial level. The accumulative areas of afforestation were 3.02 × 105 km2 in China from 2002 to 2018, it was mainly distributed in Southwest (SW), South (Sou), Southeast (SE) and Northeast (NE) of China. Among them, SW possesses the largest afforestation sub-region, with an area of 9.38 × 104 km2, accounting for 31.06% of the total. There were divergent trends of afforestation area among different sub-regions. The southern sub-regions showed increasing trends, while the northern sub-regions showed decreasing trends. In keeping with these, the center of annual afforestation moved to the south after 2009. The southern sub-regions were the majority of the cumulative GPP, accounting for nearly 70% of the total. The GPP of new afforestation showed an increasing trend from 2002 to 2018, and the increasing rate was higher than existing forests. After afforestation, the GPP change of afforestation was higher than adjacent non-forest over the same period. Our work provides new evidence that afforestation of China has enhanced the carbon assimilation and will deepen our understanding of dynamics of carbon sequestration driven by afforestation.

Keywords

Afforestation / Remote sensing / Gross primary production / Trend / Planted forests

Cite this article

Download citation ▾
Wei Yan, Hesong Wang, Chao Jiang, Osbert Jianxin Sun, Jianmin Chu, Anzhi Zhang. Afforestation boosted gross primary productivity of China: evidence from remote sensing. Journal of Forestry Research, 2025, 36(1): 40 DOI:10.1007/s11676-025-01828-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahrends A, Hollingsworth PM, Beckschäfer P, Chen H, Zomer RJ, Zhang L, Wang M, Xu J. China’s fight to halt tree cover loss. Proc R Soc b: Biol Sci, 2017, 284(1854): 20162559

[2]

Ai JL, Jia GS, Epstein HE, Wang HS, Zhang AZ, Hu YH. MODIS-based estimates of global terrestrial ecosystem respiration. JGR Biogeosci, 2018, 123(2326-352

[3]

Birhanu A, Adgo E, Frankl A, Walraevens K, Nyssen J. Modelling spatial relationships between land cover change and its drivers in the Afro-alpine belt of Mount Guna (Ethiopia). Land Degrad Dev, 2021, 32(14): 3946-3961

[4]

Bonan GB. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 2008, 320(5882): 1444-1449

[5]

Cai WX, He NP, Li MX, Xu L, Wang LZ, Zhu JH, Zeng N, Yan P, Si GX, Zhang XQ, Cen XY, Yu GR, Sun OJ. Carbon sequestration of Chinese forests from 2010 to 2060: spatiotemporal dynamics and its regulatory strategies. Sci Bull, 2022, 67(8): 836-843

[6]

Canadell JG, Raupach MR. Managing forests for climate change mitigation. Science, 2008, 320(5882): 1456-1457

[7]

Chang Z, Fan L, Wigneron JP, Wang YP, Ciais P, Chave J, Fensholt R, Chen JM, Yuan W, Ju W, Li X. Estimating aboveground carbon dynamic of China using optical and microwave remote-sensing datasets from 2013 to 2019. J Remote Sens, 2023, 3: 0005

[8]

Chausson A, Turner B, Seddon D, Chabaneix N, Girardin CAJ, Kapos V, Key I, Roe D, Smith A, Woroniecki S, Seddon N. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob Chang Biol, 2020, 26(11): 6134-6155

[9]

Chen J, Chen J, Liao AP, Cao X, Chen LJ, Chen XH, He CY, Han G, Peng S, Lu M, Zhang WW, Tong XH, Mills J. Global land cover mapping at 30m resolution: a POK-based operational approach. ISPRS J Photogramm Remote Sens, 2015, 103: 7-27

[10]

Chen C, Park T, Wang XH, Piao SL, Xu BD, Chaturvedi RK, Fuchs R, Brovkin V, Ciais P, Fensholt R, Tømmervik H, Bala G, Zhu ZC, Nemani RR, Myneni RB. China and India lead in greening of the world through land-use management. Nat Sustain, 2019, 2: 122-129

[11]

Chen YZ, Chen LY, Cheng Y, Ju WM, Chen HYH, Ruan HH. Afforestation promotes the enhancement of forest LAI and NPP in China. For Ecol Manag, 2020, 462: 117990

[12]

Chen SY, Zhang YL, Wu QL, Liu SH, Song CH, Xiao JF, Band LE, Vose JM. Vegetation structural change and CO2 fertilization more than offset gross primary production decline caused by reduced solar radiation in China. Agric for Meteor, 2021, 296: 108207

[13]

Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol, 2001, 7(4357-373

[14]

Ding Z, Zheng H, Li H, Yu PJ, Man WD, Liu MY, Tang XG, Liu Y. Afforestation-driven increases in terrestrial gross primary productivity are partly offset by urban expansion in Southwest China. Ecol Indic, 2021, 127: 107641

[15]

Drever CR, Cook-Patton SC, Akhter F, Badiou PH, Chmura GL, Davidson SJ, Desjardins RL, Dyk A, Fargione JE, Fellows M, Filewod B. Natural climate solutions for Canada. Sci Adv, 2021, 7(23eabd6034

[16]

Erbaugh JT, Pradhan N, Adams J, Oldekop JA, Agrawal A, Brockington D, Pritchard R, Chhatre A. Global forest restoration and the importance of prioritizing local communities. Nat Ecol Evol, 2020, 4(111472-1476

[17]

ESA (2015) Land Cover CCI Product User Guide Version 2. European Space Agency. http://maps.elie.ucl.ac.be/CCI/viewer/download.php [accessed on 06.02.2024].

[18]

Fang J, Chen A, Peng C, Zhao S, Ci L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292(55252320-2322

[19]

Fang JY, Guo ZD, Hu HF, Kato T, Muraoka H, Son Y. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob Chang Biol, 2014, 20(6): 2019-2030

[20]

Fang J, Yu G, Liu L, Hu S, Chapin FS3rd. Climate change, human impacts, and carbon sequestration in China. Proc Natnl Acad Sci, 2018, 115(16): 4015-4020

[21]

FAO (2020) Global Forest Resources Assessment 2020 - Key findings. Rome. https://www.fao.org/forest-resources-assessment/2020/en [accessed on 06.02.2024].

[22]

Feng YH, Schmid B, Loreau M, Forrester DI, Fei SL, Zhu JX, Tang ZY, Zhu JL, Hong PB, Ji CJ, Shi Y, Su HJ, Xiong XY, Xiao J, Wang SP, Fang JY. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science, 2022, 376(6595): 865-868

[23]

Friedlingstein P, O’Sullivan M, Jones MW, Andrew RM, Bakker DCE, Hauck J, Zheng B. Global carbon budget 2023. Earth Syst Sci Data, 2023, 15(12): 5301-5369

[24]

Gan R, Zhang YQ, Shi H, Yang YT, Eamus D, Cheng L, Chiew FHS, Yu Q. Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology, 2018, 11(5): e1974

[25]

Gao H, Huang YM. Impacts of the three-north shelter forest program on the main soil nutrients in Northern Shaanxi China: a meta-analysis. For Ecol Manag, 2020, 458: 117808

[26]

Guo QF, Ren H. Productivity as related to diversity and age in planted versus natural forests. Glob Ecol Biogeogr, 2014, 23(121461-1471

[27]

Hansen MC, Defries RS, Townshend JRG, Sohlberg R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens, 2000, 21(6–71331-1364

[28]

Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JG. High-resolution global maps of 21st-century forest cover change. Science, 2013, 342(6160): 850-853

[29]

He NP, Wen D, Zhu JX, Tang XL, Xu L, Zhang L, Hu HF, Huang M, Yu GR. Vegetation carbon sequestration in Chinese forests from 2010 to 2050. Glob Chang Biol, 2017, 23(4): 1575-1584

[30]

Huang L, Liu JY, Shao QQ, Xu XL. Carbon sequestration by forestation across China: past, present, and future. Renew Sustain Energy Rev, 2012, 16(2): 1291-1299

[31]

Huete A. Vegetation’s responses to climate variability. Nature, 2016, 531: 181-182

[32]

Ishizuka S, Hashimoto S, Kaneko S, Tsuruta K, Kida K, Aizawa S, Hashimoto T, Ito E, Umemura M, Shinomiya Y, Morishita T, Noguchi K, Ono K, Okamoto T, Mizoguchi T, Torii A, Sakai H, Inagaki Y, Shichi K, Toriyama J, Sakai Y, Inagaki M, Shirato Y, Obara H, Kohyama K, Takata Y, Katayanagi N, Kanda T, Inoue H, Kusaba T. Soil carbon stock changes due to afforestation in Japan by the paired sampling method on an equivalent mass basis. Biogeochemistry, 2021, 153(3): 263-281

[33]

Jiang CY, Ryu Y. Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from breathing earth system simulator (BESS). Remote Sens Environ, 2016, 186: 528-547

[34]

Li Y, Zhao MS, Motesharrei S, Mu QZ, Kalnay E, Li SC. Local cooling and warming effects of forests based on satellite observations. Nat Commun, 2015, 6: 6603

[35]

Li CC, Zhang YQ, Shen YJ, Kong DD, Zhou XY. LUCC-driven changes in gross primary production and actual evapotranspiration in northern China. J Geophys Res Atmos, 2020, 125(6): e201JD9031705

[36]

Li BB, Gao GY, Luo YQ, Xu MX, Liu GB, Fu BJ. Carbon stock and sequestration of planted and natural forests along climate gradient in water-limited area: a synthesis in the China’s Loess plateau. Agric for Meteor, 2023, 333: 109419

[37]

Liao LL, Zhou L, Wang SQ, Wang XQ. Carbon sequestration potential of biomass carbon pool for new afforestation in China during 2005–2013. Acta Geogr Sin, 2016, 71(111939-1947

[38]

Liu Y, Liu HH, Chen Y, Gang CC, Shen YF. Quantifying the contributions of climate change and human activities to vegetation dynamic in China based on multiple indices. Sci Total Environ, 2022, 838(Pt 4156553

[39]

Lu F, Hu HF, Sun WJ, Zhu JJ, Liu GB, Zhou WM, Zhang QF, Shi PL, Liu XP, Wu X, Zhang L, Wei XH, Dai LM, Zhang KR, Sun YR, Xue S, Zhang WJ, Xiong DP, Deng L, Liu BJ, Zhou L, Zhang C, Zheng X, Cao JS, Huang Y, He NP, Zhou GY, Bai YF, Xie ZQ, Tang ZY, Wu BF, Fang JY, Liu GH, Yu GR. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc Natl Acad Sci USA, 2018, 115(164039-4044

[40]

Ma W, Jia GS, Zhang AZ. Multiple satellite-based analysis reveals complex climate effects of temperate forests and related energy budget. J Geophys Res Atmos, 2017, 122(7): 3806-3820

[41]

Madani N, Parazoo NC, Kimball JS, Ballantyne AP, Reichle RH, Maneta M, Saatchi S, Palmer PI, Liu ZH, Tagesson T. Recent amplified global gross primary productivity due to temperature increase is offset by reduced productivity due to water constraints. AGU Adv, 2020, 1(4): e2020AV000180

[42]

Mo LD, Zohner CM, Reich PB, Liang JJ, de Miguel S, Nabuurs GJ, Renner SS, van den Hoogen J, Araza A, Herold M, Mirzagholi L, Ma HZ, Averill C, Phillips OL, Gamarra JGP, Hordijk I, Routh D, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Amaral I, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brearley FQ, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Gatti RC, César RG, Cesljar G, Chazdon RL, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Valverde FC, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Obiang NLE, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Finér L, Fischer M, Fletcher C, Frizzera L, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Hillers A, Honorio Coronado EN, Hui C, Ibanez T, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Karminov V, Kartawinata K, Kearsley E, Kenfack D, Kennard DK, Kepfer-Rojas S, Keppel G, Khan ML, Killeen TJ, Kim HS, Kitayama K, Köhl M, Korjus H, Kraxner F, Kucher D, Laarmann D, Lang M, Lu HC, Lukina NV, Maitner BS, Malhi Y, Marcon E, Marimon BS, Marimon-Junior BH, Marshall AR, Martin EH, Meave JA, Melo-Cruz O, Mendoza C, Mendoza-Polo I, Miscicki S, Merow C, Mendoza AM, Moreno VS, Mukul SA, Mundhenk P, Nava-Miranda MG, Neill D, Neldner VJ, Nevenic RV, Ngugi MR, Niklaus PA, Oleksyn J, Ontikov P, Ortiz-Malavasi E, Pan YD, Paquette A, Parada-Gutierrez A, Parfenova EI, Park M, Parren M, Parthasarathy N, Peri PL, Pfautsch S, Picard N, Piedade MTF, Piotto D, Pitman NCA, Poulsen AD, Poulsen JR, Pretzsch H, Arevalo FR, Restrepo-Correa Z, Rodeghiero M, Rolim SG, Roopsind A, Rovero F, Rutishauser E, Saikia P, Salas-Eljatib C, Saner P, Schall P, Schelhaas MJ, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Searle EB, Seben V, Serra-Diaz JM, Sheil D, Shvidenko AZ, Silva-Espejo JE, Silveira M, Singh J, Sist P, Slik F, Sonké B, Souza AF, Stereńczak KJ, Svenning JC, Svoboda M, Swanepoel B, Targhetta N, Tchebakova N, Ter Steege H, Thomas R, Tikhonova E, Umunay PM, Usoltsev VA, Valencia R, Valladares F, van der Plas F, Do TV, van Nuland ME, Vasquez RM, Verbeeck H, Viana H, Vibrans AC, Vieira S, von Gadow K, Wang HF, Watson JV, Werner GDA, Wiser SK, Wittmann F, Woell H, Wortel V, Zagt R, Zawiła-Niedźwiecki T, Zhang CY, Zhao XH, Zhou M, Zhu ZX, Zo-Bi IC, Gann GD, Crowther TW. Integrated global assessment of the natural forest carbon potential. Nature, 2023, 624(799092-101

[43]

Moon M, Zhang XY, Henebry GM, Liu LL, Gray JM, Melaas EK, Friedl MA. Long-term continuity in land surface phenology measurements: a comparative assessment of the MODIS land cover dynamics and VIIRS land surface phenology products. Remote Sens Environ, 2019, 226: 74-92

[44]

Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, David McGuire A, Piao SL, Rautiainen A, Sitch S, Hayes D. A large and persistent carbon sink in the world’s forests. Science, 2011, 333(6045): 988-993

[45]

Peng SS, Piao SL, Zeng ZZ, Ciais P, Zhou LM, Li LZX, Myneni RB, Yin Y, Zeng H. Afforestation in China cools local land surface temperature. Proc Natl Acad Sci USA, 2014, 111(8): 2915-2919

[46]

Piao SL, Wang XH, Park T, Chen C, Lian X, He Y, Bjerke JW, Chen AP, Ciais P, Tømmervik H, Nemani RR, Myneni RB. Characteristics, drivers and feedbacks of global greening. Nat Rev Earth Environ, 2020, 1: 14-27

[47]

Pugh TAM, Lindeskog M, Smith B, Poulter B, Arneth A, Haverd V, Calle L. Role of forest regrowth in global carbon sink dynamics. Proc Natl Acad Sci USA, 2019, 116(10): 4382-4387

[48]

Qi JJ, Dauvergne P. China and the global politics of nature-based solutions. Environ Sci Policy, 2022, 137: 1-11

[49]

Qiu BW, Chen G, Tang ZH, Lu DF, Wang ZZ, Chen CC. Assessing the three-north shelter forest program in China by a novel framework for characterizing vegetation changes. ISPRS J Photogramm Remote Sens, 2017, 133: 75-88

[50]

Ruehr S, Keenan TF, Williams C, Zhou Y, Lu XC, Bastos A, Canadell JG, Prentice IC, Sitch S, Terrer C. Evidence and attribution of the enhanced land carbon sink. Nat Rev Earth Environ, 2023, 4: 518-534

[51]

Running S, Mu Q, Zhao M. MOD17A2H MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500 m SIN Grid V0062015NASA EOSDIS Land Process Distrib Active Arch Cent

[52]

Ryu Y, Baldocchi DD, Kobayashi H, van Ingen C, Li J, Black TA, Beringer J, van Gorsel E, Knohl A, Law BE, Roupsard O. Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. Glob Biogeochem Cycles, 2011

[53]

Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B3rd, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414(6860): 169-172

[54]

Schwärzel K, Zhang LL, Montanarella L, Wang YH, Sun G. How afforestation affects the water cycle in drylands: a process-based comparative analysis. Glob Chang Biol, 2020, 26(2): 944-959

[55]

Shi Z, Thomey ML, Mowll W, Litvak M, Brunsell NA, Collins SL, Pockman WT, Smith MD, Knapp AK, Luo Y. Differential effects of extreme drought on production and respiration: synthesis and modeling analysis. Biogeosciences, 2014, 11(3): 621-633

[56]

Shimada M, Itoh T, Motooka T, Watanabe M, Shiraishi T, Thapa R, Lucas R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens Environ, 2014, 155: 13-31

[57]

Sulla-Menashe D, Gray JM, Abercrombie SP, Friedl MA. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens Environ, 2019, 222: 183-194

[58]

Tagesson T, Kelly J, Schurgers G, Tian F, Ardö J, Horion S, Ahlström A, Olin S, Fensholt R. Increasing global ecosystem respiration between 1982 and 2015 from Earth observation-based modelling. Global Ecol Biogeogr, 2024, 33(1): 116-130

[59]

Tong XW, Brandt M, Yue YM, Ciais P, Rudbeck Jepsen M, Penuelas J, Wigneron JP, Xiao XM, Song XP, Horion S, Rasmussen K, Saatchi S, Fan L, Wang KL, Zhang B, Chen ZC, Wang YH, Li XJ, Fensholt R. Forest management in Southern China generates short term extensive carbon sequestration. Nat Commun, 2020, 11(1): 129

[60]

Wang F, Pan XB, Gerlein-Safdi C, Cao XM, Wang S, Gu LH, Wang DF, Lu Q. Vegetation restoration in northern China: a contrasted picture. Land Degrad Dev, 2020, 31(6669-676

[61]

Wang YR, Buchmann N, Hessen DO, Stordal F, Erisman JW, Vollsnes AV, Andersen T, Dolman H. Disentangling effects of natural and anthropogenic drivers on forest net ecosystem production. Sci Total Environ, 2022, 839: 156326

[62]

World Bank. Biodiversity, climate change, and adaptation: nature-based solutions from the world bank portfolio, 2008, Washington, The World Bank

[63]

Wu ZT, Wu JJ, Liu JH, He B, Lei TJ, Wang QF. Increasing terrestrial vegetation activity of ecological restoration program in the Beijing-Tianjin Sand Source Region of China. Ecol Eng, 2013, 52: 37-50

[64]

Wu ZT, Yu L, Zhang XY, Du ZQ, Zhang H. Satellite-based large-scale vegetation dynamics in ecological restoration programmes of Northern China. Int J Remote Sens, 2019, 40(5–6): 2296-2312

[65]

Xu JY. Estimation of the spatial distribution of potential forestation land and its climatic potential productivity in China. Acta Geogr Sin, 2023, 78(3): 677-693(in Chinese)

[66]

Xu X, Liu J, Zhang S, Li R, Yan C, Wu S. China’s multi-period land use land cover remote sensing monitoring dataset (CNLUCC). Data Regist Publ Syst Resour Environ Sci Data Center Chin Acad Sci, 2018

[67]

Xu WY, Jin XB, Liu J, Yang XH, Ren J, Zhou YK. Analysis of spatio-temporal changes in forest biomass in China. J for Res, 2022, 33(1): 261-278

[68]

Xu H, Yue C, Zhang Y, Liu D, Piao SL. Forestation at the right time with the right species can generate persistent carbon benefits in China. Proc Natl Acad Sci USA, 2023, 120(41): e2304988120

[69]

Yang YH, Shi Y, Sun WJ, Chang JF, Zhu JX, Chen LY, Wang X, Guo YP, Zhang HT, Yu LF, Zhao SQ, Xu K, Zhu JL, Shen HH, Wang YY, Peng YF, Zhao X, Wang XP, Hu HF, Chen SP, Huang M, Wen XF, Wang SP, Zhu B, Niu SL, Tang ZY, Liu LL, Fang JY. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci China Life Sci, 2022, 65(5861-895

[70]

You NS, Meng JJ, Zhu LJ, Jiang S, Zhu LK, Li F, Kuo LJ. Isolating the impacts of land use/cover change and climate change on the GPP in the Heihe river basin of China. JGR Biogeosci, 2020, 125(10): e2020JG005734

[71]

Yu Z, Zhao HR, Liu SR, Zhou GY, Fang JY, Yu GR, Tang XL, Wang WT, Yan JH, Wang GX, Ma KP, Li SG, Du S, Han SJ, Ma YX, Zhang DQ, Liu JX, Liu SZ, Chu GW, Zhang QM, Li YL. Mapping forest type and age in China’s plantations. Sci Total Environ, 2020, 744: 140790

[72]

Yu Z, Zhou GY, Liu SR, Sun PS, Agathokleous E. Impacts of forest management intensity on carbon accumulation of China’s forest plantations. For Ecol Manag, 2020, 472: 118252

[73]

Yu Z, You WB, Agathokleous E, Zhou GY, Liu SR. Forest management required for consistent carbon sink in China’s forest plantations. For Ecosyst, 2021, 8(154

[74]

Yu GR, Zhu JX, Xu L, He NP. Technological approaches to enhance ecosystem carbon sink in China: nature-based solutions. Bull Chin Acad Sci, 2022, 37(4490-501

[75]

Yu Z, Dong YL, Lu CQ, Agathokleous E, Zhang L, Liu SR, Zhou GY. China’s forestation on marginal land was less efficient in carbon sequestration compared with non-marginal land. One Earth, 2023, 6(121692-1702

[76]

Yue X, Zhang TY, Shao CL. Afforestation increases ecosystem productivity and carbon storage in China during the 2000s. Agric for Meteor, 2021, 296: 108227

[77]

Yue X, Zhou H, Cao Y, Liao H, Lu XF, Yu Z, Yuan WP, Liu Z, Lei YD, Sitch S, Knauer J, Wang HJ. Large potential of strengthening the land carbon sink in China through anthropogenic interventions. Sci Bull, 2024, 69(16): 2622-2631

[78]

Zeng JY, Matsunaga T, Tan ZH, Saigusa N, Shirai T, Tang YH, Peng SS, Fukuda Y. Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest. Sci Data, 2020, 7(1313

[79]

Zhang YX, Song CH. Impacts of afforestation, deforestation, and reforestation on forest cover in China from 1949 to 2003. J for, 2006, 104(7383-387

[80]

Zhang Y, Peng CH, Li WZ, Tian LX, Zhu QA, Chen H, Fang XQ, Zhang GL, Liu GB, Mu XM, Li ZB, Li SQ, Yang YZ, Wang J, Xiao XM. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecol Indic, 2016, 61: 404-412

[81]

Zhang XD, Du J, Huang T, Zhang LM, Gao H, Zhao Y, Ma JM. Atmospheric removal of PM2.5 by man-made Three Northern regions shelter forest in Northern China estimated using satellite retrieved PM2.5 concentration. Sci Total Environ, 2017, 593: 713-721

[82]

Zhang Y, Joiner J, Alemohammad SH, Zhou S, Gentine P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences, 2018, 15(19): 5779-5800

[83]

Zhang YQ, Kong DD, Gan R, Chiew FHS, McVicar TR, Zhang Q, Yang YT. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens Environ, 2019, 222: 165-182

[84]

Zhang Y, Commane R, Zhou S, Williams AP, Gentine P. Light limitation regulates the response of autumn terrestrial carbon uptake to warming. Nat Clim Change, 2020, 10: 739-743

[85]

Zhang DN, Zuo XX, Zang CF. Assessment of future potential carbon sequestration and water consumption in the construction area of the Three-North Shelterbelt Programme in China. Agric for Meteor, 2021, 303: 108377

[86]

Zhang L, Sun PS, Huettmann F, Liu SR. Where should China practice forestry in a warming world?. Glob Chang Biol, 2022, 28(72461-2475

[87]

Zhang XY, Zhou YL, He W, Ju WM, Liu YB, Bi WJ, Cheng N, Wei XN. Land cover change instead of solar radiation change dominates the forest GPP increase during the recent phase of the Shelterbelt Program for Pearl River. Ecol Indic, 2022, 136: 108664

[88]

Zhao HW, Wu CY, Wang XY. Large-scale forest conservation and restoration programs significantly contributed to land surface greening in China. Environ Res Lett, 2022, 17(2024023

[89]

Zhu ZC, Piao SL, Myneni RB, Huang MT, Zeng ZZ, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao CX, Cheng L, Kato E, Koven C, Li Y, Lian X, Liu YW, Liu RG, Mao JF, Pan YZ, Peng SS, Peñuelas J, Poulter B, Pugh TAM, Stocker BD, Viovy N, Wang XH, Wang YP, Xiao ZQ, Yang H, Zaehle S, Zeng N. Greening of the Earth and its drivers. Nat Clim Change, 2016, 6: 791-795

[90]

Zhu XJ, Fan RX, Chen Z, Wang QF, Yu GR. Eddy covariance-based differences in net ecosystem productivity values and spatial patterns between naturally regenerating forests and planted forests in China. Sci Rep, 2022, 12(120556

RIGHTS & PERMISSIONS

Northeast Forestry University

PDF

43

Accesses

0

Citation

Detail

Sections
Recommended

/