Allometric equations to quantify aboveground biomass in mixed-species plantations with restoration purposes in the tropical Andes

Juan M. Giraldo-Salazar , Jorge A. Giraldo , Juan S. Mendoza-Páez , Juan C. Sierra , Jairo A. Rueda , Luis F. Osorio-Vélez

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 44

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) :44 DOI: 10.1007/s11676-025-01827-w
Original Paper
research-article

Allometric equations to quantify aboveground biomass in mixed-species plantations with restoration purposes in the tropical Andes

Author information +
History +
PDF

Abstract

The Andean montane forests provide a wide range of ecosystem services like water supply, carbon sequestration, and biodiversity preservation. Restoration of these forests is critical due to their degraded state and the need to recover, maintain and enhance the ecosystem services they provide. However, we lack understanding of aboveground biomass (AGB) accumulation in restored Andean montane forests. AGB is a key indicator of ecosystem productivity and provides essential data on vegetation carbon stocks, permitting the assess successfulness of restoration efforts. In 2010 the initiative Más Bosques para Medellín was formulated in Medellín City, tropical Andes, Colombia, aiming to restore the forests located in the surrounding rural areas of the city, with interest in preserving the ecosystems services like water supply. The project established 548 ha of mixed plantations with native species. After 13 years, our study aims to developed in situ allometric equations and to evaluate AGB accumulation to assess restoration performance. We measured, harvested, and weighted 144 individuals from these arrangements to fit a general equation for the project and six specific equations for each one of the six most frequent species. The AGB had a positive correlation with diameter at breast height (D), total height (H) and specific wood density (WD). The best general equation uses D and WD as predictors (R2 = 0.928). The specific species equations certainly responded to the functional traits of each species. Using the latest inventory of permanent plots of the project we estimated a mean AGB accumulation of 41.91 ± 30.34 Mg ha–1 and a total accumulation of 22,996.05 Mg of AGB for the 548 ha. We compared these results with studies developed for natural forest in the region and other land covers. We found contrast behaviors in the AGB accumulation across our study zones. The developed equations have broad applicability across the Andes region, offering valuable insights for similar restoration initiatives. Furthermore, will facilitate the assessment of current restoration efforts and inform scientifically based decisions for future mixed plantation practices.

Keywords

Aboveground biomass / Allometric equations / Active restoration / Mixed plantations / Quercus humboldtii

Cite this article

Download citation ▾
Juan M. Giraldo-Salazar, Jorge A. Giraldo, Juan S. Mendoza-Páez, Juan C. Sierra, Jairo A. Rueda, Luis F. Osorio-Vélez. Allometric equations to quantify aboveground biomass in mixed-species plantations with restoration purposes in the tropical Andes. Journal of Forestry Research, 2025, 36(1): 44 DOI:10.1007/s11676-025-01827-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agudelo MF. La gestión de ecosistemas estratégicos proveedores de agua. El caso de las cuencas que abastecen a Medellín y Bogotá en Colombia. Gestión y Ambiente, 2013, 16: 109-121

[2]

Alexander S, Nelson CR, Aronson J, Lamb D, Cliquet A, Erwin KL, Finlayson CM, de Groot RS, Harris JA, Higgs ES, Hobbs RJ, Robin Lewis RRIII, Martinez D, Murcia C. Opportunities and challenges for ecological restoration within REDD+. Restor Ecol, 2011, 19(6): 683-689

[3]

Alvarez E, Duque A, Saldarriaga J, Cabrera K, de las Salas G, del Valle I, Lema A, Moreno F, Orrego S, Rodríguez L. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For Ecol Manag, 2012, 267: 297-308

[4]

Álvarez-Villa ÓD, Franco D, Vergara S, García V, Cortés M, Giraldo J, Montoya J, Gómez J, Peña N, Rogeliz C. Retornos de la inversión en la conservación de cuencas tropicales incluyendo la emisión de bonos de carbono. Ing Agua, 2023, 27(2): 139-167

[5]

Armenteras D, Espelta JM, Rodríguez N, Retana J. Deforestation dynamics and drivers in different forest types in Latin America: three decades of studies (1980–2010). Glob Environ Change, 2017, 46: 139-147

[6]

Armenteras D, Rodríguez N, Retana J, Morales M. Understanding deforestation in montane and lowland forests of the Colombian Andes. Reg Environ Change, 2011, 11(3): 693-705

[7]

Avella Muñoz A, Cárdenas Camacho LM. Conservación y uso sostenible de los bosques de roble en el corredor de conservación guantiva - la Rusia - Iguaque, departamentos de Santander y Boyacá, Colombia. Colomb for, 2010, 13(1): 5-26

[8]

Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M, Sulla-Menashe D, Hackler J, Beck PSA, Dubayah R, Friedl MA, Samanta S, Houghton RA. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat Clim Change, 2012, 2: 182-185

[9]

Bonnesoeur V, Locatelli B, Guariguata MR, Ochoa-Tocachi BF, Vanacker V, Mao Z, Stokes A, Mathez-Stiefel SL. Impacts of forests and forestation on hydrological services in the Andes: a systematic review. For Ecol Manag, 2019, 433: 569-584

[10]

Calmon M, Brancalion PHS, Paese A, Aronson J, Castro P, da Silva SC, Rodrigues RR. Emerging threats and opportunities for large-scale ecological restoration in the Atlantic forest of Brazil. Restor Ecol, 2011, 19(2): 154-158

[11]

Cano-Arboleda LV, Villegas JC, Restrepo AC, Quintero-Vallejo E. Complementary effects of tree species on canopy rainfall partitioning: new insights for ecological restoration in Andean ecosystems. For Ecol Manag, 2022, 507 119969

[12]

Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 2005, 145(1): 87-99

[13]

Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. Towards a worldwide wood economics spectrum. Ecol Lett, 2009, 12(4): 351-366

[14]

Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol, 2014, 20(10): 3177-3190

[15]

Chazdon RL. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science, 2008, 320(5882): 1458-1460

[16]

Duque A, Peña MA, Cuesta F, González-Caro S, Kennedy P, Phillips OL, Calderón-Loor M, Blundo C, Carilla J, Cayola L, Farfán-Ríos W, Fuentes A, Grau R, Homeier J, Loza-Rivera MI, Malhi Y, Malizia A, Malizia L, Martínez-Villa JA, Myers JA, Osinaga-Acosta O, Peralvo M, Pinto E, Saatchi S, Silman M, Tello JS, Terán-Valdez A, Feeley KJ. Mature Andean forests as globally important carbon sinks and future carbon refuges. Nat Commun, 2021, 12(1): 2138

[17]

Duque A, Saldarriaga J, Meyer V, Saatchi S. Structure and allometry in tropical forests of Chocó, Colombia. For Ecol Manag, 2017, 405: 309-318

[18]

Escobar Chimbaco MJ, Marín A, Giraldo JA, Ramirez JA. Potencial dendrocronológico de tres especies de Podocarpáceas de la Cordillera de los Andes. Rev Biol Trop, 2023, 71(1e54971

[19]

Estrada CHH. Formulación del proyecto MDL forestal “Más bosques para Medellín: un ambiente sano para el presente y el futuro” en el municipio de Medellín (Antioquia-Colombia). Producción Más Limpia, 2009, 4(183-108

[20]

Evans MEK, DeRose RJ, Klesse S, Girardin MP, Heilman KA, Alexander MR, Arsenault A, Babst F, Bouchard M, Cahoon SMP, Campbell EM, Dietze M, Duchesne L, Frank DC, Giebink CL, Gómez-Guerrero A, García GG, Hogg EH, Metsaranta J, Ols C, Rayback SA, Reid A, Ricker M, Schaberg PG, Shaw JD, Sullivan PF, GaytÁn SAV. Adding tree rings to North America’s national forest inventories: an essential tool to guide drawdown of atmospheric CO2. Bioscience, 2022, 72(3): 233-246

[21]

Feldpausch TR, Lloyd J, Lewis SL, Brienen RJW, Gloor M, Monteagudo Mendoza A, Lopez-Gonzalez G, Banin L, Abu Salim K, Affum-Baffoe K, Alexiades M, Almeida S, Amaral I, Andrade A, Aragão LEOC, Araujo Murakami A, Arets EJMM, Arroyo L, Aymard CGA, Baker TR, Bánki OS, Berry NJ, Cardozo N, Chave J, Comiskey JA, Alvarez E, de Oliveira A, Di Fiore A, Djagbletey G, Domingues TF, Erwin TL, Fearnside PM, França MB, Freitas MA, Higuchi N, Honorio CE, Iida Y, Jiménez E, Kassim AR, Killeen TJ, Laurance WF, Lovett JC, Malhi Y, Marimon BS, Marimon-Junior BH, Lenza E, Marshall AR, Mendoza C, Metcalfe DJ, Mitchard ETA, Neill DA, Nelson BW, Nilus R, Nogueira EM, Parada A, Peh KSH, Pena Cruz A, Peñuela MC, Pitman NCA, Prieto A, Quesada CA, Ramírez F, Ramírez-Angulo H, Reitsma JM, Rudas A, Saiz G, Salomão RP, Schwarz M, Silva N, Silva-Espejo JE, Silveira M, Sonké B, Stropp J, Taedoumg HE, Tan S, ter Steege H, Terborgh J, Torello-Raventos M, van der Heijden GMF, Vásquez R, Vilanova E, Vos VA, White L, Willcock S, Woell H, Phillips OL. Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9(110): 3381-3403

[22]

Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol, 2017, 37(12): 4302-4315

[23]

Fonseca W, Ruíz L, Rojas M, Alice F. Modelos alométricos para la estimación de biomasa y carbono en Alnus acuminata. Rev C Ambientales, 2013, 46(1): 37-50

[24]

Gaglio M, Aschonitis VG, Mancuso MM, Reyes Puig JP, Moscoso F, Castaldelli G, Fano EA. Changes in land use and ecosystem services in tropical forest areas: a case study in Andes mountains of Ecuador. Int J Biodivers Sci Ecosyst Serv Manag, 2017, 13(1): 264-279

[25]

Girardin CAJ, Farfan-Rios W, Garcia K, Feeley KJ, Jørgensen PM, Murakami AA, Cayola Pérez L, Seidel R, Paniagua N, Fuentes Claros AF, Maldonado C, Silman M, Salinas N, Reynel C, Neill DA, Serrano M, Caballero CJ, La Torre CMDLA, Macía MJ, Killeen TJ, Malhi Y. Spatial patterns of above-ground structure, biomass and composition in a network of six Andean elevation transects. Plant Ecol Divers, 2014, 7(1–2): 161-171

[26]

González-Caro S, Duque Á, Feeley KJ, Cabrera E, Phillips J, Ramirez S, Yepes A. The legacy of biogeographic history on the composition and structure of Andean forests. Ecology, 2020, 101(10 e03131

[27]

Guariguata MR, Ostertag R. Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manag, 2001, 148(1–3): 185-206

[28]

Hartig K, Beck E (2003) The bracken fern (Pteridium arachnoideum (Kaulf.) Maxon) dilemma in the Andes of southern Ecuador. Ecotropica 9:3–13. https://api.semanticscholar.org/CorpusID:132796189

[29]

Holdridge L, Grenke W, Hatheway W, Liang T, Tosi J. Forest environments in tropical life zones: a pilot study, 1971, New York, Pergamon Press

[30]

Hunter MO, Keller M, Victoria D, Morton DC. Tree height and tropical forest biomass estimation. Biogeosciences, 2013, 10(12): 8385-8399

[31]

León JD, Vélez G, Yepes AP. Estructura y composición florística de tres robledales en la región Norte de la Cordillera central de Colombia. Rev Biol Trop, 2009, 57(4): 1165-1182

[32]

Malhi Y, Saatchi S, Girardin C, Aragão LEOC. Keller M, Bustamante M, Gash J, Silva Dias P. The production, storage, and flow of carbon in Amazonian forests. Geophysical monograph series, 2009, Washington, D. C., American Geophysical Union355372

[33]

Malhi Y, Silman M, Salinas N, Bush M, Meir P, Saatchi S. Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Glob Change Biol, 2010, 16(12): 3171-3175

[34]

Malizia A, Blundo C, Carilla J, Acosta OO, Cuesta F, Duque A, Aguirre N, Aguirre Z, Ataroff M, Baez S, Calderón-Loor M, Cayola L, Cayuela L, Ceballos S, Cedillo H, Ríos WF, Feeley KJ, Fuentes AF, Gámez Álvarez LE, Grau R, Homeier J, Jadan O, Llambi LD, Rivera MIL, Macía MJ, Malhi Y, Malizia L, Peralvo M, Pinto E, Tello S, Silman M, Young KR. Elevation and latitude drives structure and tree species composition in Andean forests: results from a large-scale plot network. PLoS ONE, 2020, 15(4 e0231553

[35]

Mendoza-Páez JS, Giraldo JA, Mazo-Lopera MA, Giraldo-Salazar JM, Osorio-Vélez LF. Trends in planted native tree biomass established in a tropical Andes city water basins. Restor Ecol, 2024

[36]

Mokria M, Mekuria W, Gebrekirstos A, Aynekulu E, Belay B, Gashaw T, Bräuning A. Mixed-species allometric equations and estimation of aboveground biomass and carbon stocks in restoring degraded landscape in northern Ethiopia. Environ Res Lett, 2018, 13(2 024022

[37]

Molto Q, Rossi V, Blanc L. Error propagation in biomass estimation in tropical forests. Methods Ecol Evol, 2013, 4(2): 175-183

[38]

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature, 2000, 403: 853-858

[39]

Nogueira LRJr, Engel VL, Parrotta JA, de Melo ACG, DS. Allometric equations for estimating tree biomass in restored mixed-species Atlantic Forest stands. Biota Neotrop, 2014

[40]

Palmer MA, Filoso S. Restoration of ecosystem services for environmental markets. Science, 2009, 325: 575-576

[41]

Peña MA, Feeley KJ, Duque A. Effects of endogenous and exogenous processes on aboveground biomass stocks and dynamics in Andean forests. Plant Ecol, 2018, 219(12): 1481-1492

[42]

Peña MA, Saldarriaga J, Duque-Montoya ÁJ. Acumulación de carbono y cambios estructurales en bosques secundarios del Oriente antioqueño, Colombia. Actual Biol, 2017, 33(95): 209-217

[43]

Philipson CD, Cutler MEJ, Brodrick PG, Asner GP, Boyd DS, Costa PM, Fiddes J, Foody GM, van der Heijden GMF, Ledo A, Lincoln PR, Margrove JA, Martin RE, Milne S, Pinard MA, Reynolds G, Snoep M, Tangki H, Wai YS, Wheeler CE, Burslem DFRP. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science, 2020, 369: 838-841

[44]

Picard N, Saint-André L, Henry M (2012) Manual for building tree volume and biomass allometric equations: from field measurement to prediction. Food and Agricultural Organization of the United Nations, Rome, and Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Montpellier

[45]

Piquer-Doblas M, Correa-Londoño GA, Osorio-Vélez LF. From stand to forest: woody plant recruitment in an Andean Restoration Project. Plants, 2024, 13(17): 2474

[46]

R Core Team (2023) R: a language and environment for statistical computing.

[47]

Ramírez JA, Marín A, Gómez A, del Valle JI. Growth and yield of Retrophyllum rospigliosii pure plantations in the Colombian Andes. New for, 2024, 55(51363-1378

[48]

Restrepo HI, Orrego SA, Galeano OJ. Estructura de bosques secundarios y rastrojos montano bajos del norte de Antioquia, Colombia. Colomb for, 2012, 15(2): 173-189

[49]

Rodríguez-Echeverry J, Leiton M. State of the landscape and dynamics of loss and fragmentation of forest critically endangered in the tropical Andes hotspot: implications for conservation planning. J Landsc Ecol, 2021, 14(1): 73-91

[50]

Salinas N, Cosio EG, Silman M, Meir P, Nottingham AT, Roman-Cuesta RM, Malhi Y. Editorial: tropical montane forests in a changing environment. Front Plant Sci, 2021, 12 712748

[51]

Segura-Madrigal MA, Andrade HJ, Sierra Ramírez E. Diversidad florística y captura de carbono en robledales y pasturas con árboles en Santa Isabel, Tolima, Colombia. Rev Biología Trop, 2020, 68(2): 383-393

[52]

Sierra CA, del Valle JI, Orrego SA, Moreno FH, Harmon ME, Zapata M, Colorado GJ, Herrera MA, Lara W, Restrepo DE, Berrouet LM, Loaiza LM, Benjumea JF. Total carbon stocks in a tropical forest landscape of the Porce region. Colombia for Ecol Manag, 2007, 243(2–3): 299-309

[53]

Sinacore K, García EH, Finkral A, van Breugel M, Lopez OR, Espinosa C, Miller A, Howard T, Hall JS. Mixed success for carbon payments and subsidies in support of forest restoration in the neotropics. Nat Commun, 2023, 14: 8359

[54]

Spracklen DV, Righelato R. Tropical montane forests are a larger than expected global carbon store. Biogeosciences, 2014, 11(10): 2741-2754

[55]

Toledo-Aceves T, Trujillo-Miranda AL, López-Barrera F. Tree regeneration in active and passive cloud forest restoration: functional groups and timber species. For Ecol Manag, 2021, 489 119050

[56]

Trujillo-Miranda AL, Toledo-Aceves T, López-Barrera F, Günter S. Tree diversity and timber productivity in planted forests: Pinus patula versus mixed cloud forest species. New for, 2021, 52(2177-195

Funding

National University of Colombia

RIGHTS & PERMISSIONS

The Author(s)

PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

/