Review and perspectives of digital twin systems for wildland fire management

Yizhou Li, Tianhang Zhang, Yifei Ding, Rahul Wadhwani, Xinyan Huang

Journal of Forestry Research ›› 2024, Vol. 36 ›› Issue (1) : 14.

Journal of Forestry Research ›› 2024, Vol. 36 ›› Issue (1) : 14. DOI: 10.1007/s11676-024-01810-x
Review Article

Review and perspectives of digital twin systems for wildland fire management

Author information +
History +

Abstract

Abstract

Effective wildland fire management requires real-time access to comprehensive and distilled information from different data sources. The Digital Twin technology becomes a promising tool in optimizing the processes of wildfire prevention, monitoring, disaster response, and post-fire recovery. This review examines the potential utility of Digital Twin in wildfire management and aims to inspire further exploration and experimentation by researchers and practitioners in the fields of environment, forestry, fire ecology, and firefighting services. By creating virtual replicas of wildfire in the physical world, a Digital Twin platform facilitates data integration from multiple sources, such as remote sensing, weather forecasting, and ground-based sensors, providing a holistic view of emergency response and decision-making. Furthermore, Digital Twin can support simulation-based training and scenario testing for prescribed fire planning and firefighting to improve preparedness and response to evacuation and rescue. Successful applications of Digital Twin in wildfire management require horizontal collaboration among researchers, practitioners, and stakeholders, as well as enhanced resource sharing and data exchange. This review seeks a deeper understanding of future wildland fire management from a technological perspective and inspiration of future research and implementation. Further research should focus on refining and validating Digital Twin models and the integration into existing fire management operations, and then demonstrating them in real wildland fires.

Cite this article

Download citation ▾
Yizhou Li, Tianhang Zhang, Yifei Ding, Rahul Wadhwani, Xinyan Huang. Review and perspectives of digital twin systems for wildland fire management. Journal of Forestry Research, 2024, 36(1): 14 https://doi.org/10.1007/s11676-024-01810-x

References

Alkhatib AAA. A review on forest fire detection techniques. Int J Distrib Sens Netw, 2014, 10(3) 597368
CrossRef Google scholar
Almeida JS, Jagatheesaperumal SK, Nogueira FG, de Albuquerque VHC. EdgeFireSmoke++: a novel lightweight algorithm for real-time forest fire detection and visualization using Internet of Things-human machine interface. Expert Syst Appl, 2023, 221 119747
CrossRef Google scholar
Altangerel K, Kull CA. The prescribed burning debate in Australia: conflicts and compatibilities. J Environ Plan Manag, 2013, 56(1): 103-120
CrossRef Google scholar
Bakhshaii A, Johnson EA. A review of a new generation of wildfire–atmosphere modeling. Can J For Res, 2019, 49(6): 565-574
CrossRef Google scholar
Bal N. Forty years of material flammability: an appraisal of its role, its experimental determination and its modelling. Fire Saf J, 2018, 96: 46-58
CrossRef Google scholar
Barykin SY, Bochkarev AA, Dobronravin E, Sergeev SM. The place and role of digital twin in supply chain management. Acad Strat Mgmt J, 2021, 20: 1-19
Batty M. Digital twins. Environ Plan B Urban Anal City Sci, 2018, 45: 817-820
CrossRef Google scholar
Belcher CM (2013) Fire phenomena and the earth system: an interdisciplinary guide to fire science. Wiley. https://www.wiley.com/enus/Fire+Phenomena+and+the+Earth+System%3A+An+Interdisciplinary+Guide+to+Fire+Science-p-9780470657485
Bhatti G, Mohan H, Raja Singh R. Towards the future of smart electric vehicles: digital twin technology. Renew Sustain Energy Rev, 2021, 141 110801
CrossRef Google scholar
Biswell H. Prescribed burning in California wildlands vegetation management, 1999 Berkeley University of California Press
Bonta M, Gosford R, Eussen D, Ferguson N, Loveless E, Witwer M. Intentional fire-spreading by “Firehawk” raptors in Northern Australia. J Ethnobiol, 2017, 37(4): 700-718
CrossRef Google scholar
Bouguettaya A, Zarzour H, Taberkit AM, Kechida A. A review on early wildfire detection from unmanned aerial vehicles using deep learning-based computer vision algorithms. Signal Process, 2022, 190 108309
CrossRef Google scholar
Bushnaq OM, Chaaban A, Al-Naffouri TY. The role of UAV-IoT networks in future wildfire detection. IEEE Internet Things J, 2021, 8(23): 16984-16999
CrossRef Google scholar
Byari M, Bernoussi A, Jellouli O, Ouardouz M, Amharref M. Multi-scale 3D cellular automata modeling: application to wildland fire spread. Chaos Solitons Fractals, 2022, 164 112653
CrossRef Google scholar
Calkin DE, Barrett K, Cohen JD, Finney MA, Pyne SJ, Quarles SL. Wildland-urban fire disasters aren’t actually a wildfire problem. Proc Natl Acad Sci USA, 2023, 120(51) e2315797120
CrossRef Google scholar
Castanedo F. A review of data fusion techniques. Sci World J, 2013, 2013 704504
CrossRef Google scholar
Champ PA, Brenkert-Smith H. Is seeing believing? Perceptions of wildfire risk over time. Risk Analysis, 2016, 36(4): 816-830
CrossRef Google scholar
Chen YQ, Cao JB, Zhou LX, Li F, Fu SL. Effects of prescribed burning on carbon accumulation in two paired vegetation sites in subtropical China. For Ecosyst, 2019, 6: 26
CrossRef Google scholar
Chen Y, Hantson S, Andela N, Coffield SR, Graff CA, Morton DC, Ott LE, Foufoula-Georgiou E, Smyth P, Goulden ML, Randerson JT. California wildfire spread derived using VIIRS satellite observations and an object-based tracking system. Sci Data, 2022, 9(1): 249
CrossRef Google scholar
Chen YH, Zhang YM, Xin J, Wang GY, Mu LX, Yi YM, Liu H, Liu D (2019b) UAV image-based forest fire detection approach using convolutional neural network. In: 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China. pp 2118–2123. https://doi.org/10.1109/ICIEA.2019.8833958
Chuvieco E, Aguado I, Salas J, García M, Yebra M, Oliva P. Satellite remote sensing contributions to wildland fire science and management. Curr For Rep, 2020, 6(2): 81-96
CrossRef Google scholar
Crawl D, Block J, Lin K, Altintas I. Firemap: a dynamic data-driven predictive wildfire modeling and visualization environment. Procedia Comput Sci, 2017, 108: 2230-2239
CrossRef Google scholar
Denham M, Wendt K, Bianchini G, Cortés A, Margalef T. Dynamic data-driven genetic algorithm for forest fire spread prediction. J Comput Sci, 2012, 3(5): 398-404
CrossRef Google scholar
Dether D, Black A. Learning from escaped prescribed fires-lessons for high reliability. Fire Manag Today, 2006, 66(4): 50-56
Ding YF, Zhang YX, Huang XY. Intelligent emergency digital twin system for monitoring building fire evacuation. J Build Eng, 2023, 77 107416
CrossRef Google scholar
Eftimie R, Mavrodin A, Bordas SPA. Chapter Four—From digital control to digital twins in medicine: a brief review and future perspectives. Adv Appl Mech, 2023, 56: 323-368
CrossRef Google scholar
Elayan H, Aloqaily M, Guizani M. Digital twin for intelligent context-aware IoT healthcare systems. IEEE Internet Things J, 2021, 8(23): 16749-16757
CrossRef Google scholar
Enders MR, Hoßbach N (2019) Dimensions of digital twin applications-a literature review. In: Proceedings of the 2019 Americas Conference on Information Systems (AMCIS), 15–17 August 2019, Cancún, México.
Fan C, Zhang C, Yahja A, Mostafavi A. Disaster city digital twin: a vision for integrating artificial and human intelligence for disaster management. Int J Inf Manag, 2021, 56 102049
CrossRef Google scholar
Far SB, Rad AI. Applying digital twins in metaverse: user interface, security and privacy challenges. J Metaverse, 2022, 2(1): 8-15
Fascista A. Toward integrated large-scale environmental monitoring using WSN/UAV/crowdsensing: a review of applications, signal processing, and future perspectives. Sensors, 2022, 22(5): 1824
CrossRef Google scholar
Fernandes PM, Davies GM, Ascoli D, Fernández C, Moreira F, Rigolot E, Stoof CR, Vega JA, Molina D. Prescribed burning in southern Europe: developing fire management in a dynamic landscape. Frontiers Ecol & Environ, 2013, 11(s1): e4-e14
CrossRef Google scholar
Freire JG, DaCamara CC. Using cellular automata to simulate wildfire propagation and to assist in fire management. Nat Hazards Earth Syst Sci, 2019, 19(1): 169-179
CrossRef Google scholar
Gelernter D. Mirror worlds: or the day software puts the universe in a shoebox: How it will happen and what it will mean, 1993 Oxford Oxford University Press
Gewali V, Panday SP (2023) Deep neural networks for wild fire detection and monitoring with UAV. In: Shaw RN, Paprzycki M, Ghosh A (eds.) Advanced Communication and Intelligent Systems, ICACIS 2022, Communications in Computer and Information Science, vol 1749, Springer, Cham. https://doi.org/10.1007/978-3-031-25088-0_37
Glasspool IJ, Edwards D, Axe L. Charcoal in the Silurian as evidence for the earliest wildfire. Geology, 2004, 32(5): 381-383
CrossRef Google scholar
González-Cabán A. Wildland fire management policy and fire management economic efficiency in the USDA Forest Service. Wildfire 2007, 4th International Wildland Fire Conference, 2007 Spain Seville 13-17
Govil K, Welch ML, Ball JT, Pennypacker CR. Preliminary results from a wildfire detection system using deep learning on remote camera images. Remote Sens, 2020, 12(1): 166
CrossRef Google scholar
Grieves MW. Product lifecycle management: the new paradigm for enterprises. Int J Prod Dev, 2005, 2(1–2): 71
CrossRef Google scholar
Hodges JL, Lattimer BY. Wildland fire spread modeling using convolutional neural networks. Fire Technol, 2019, 55(6): 2115-2142
CrossRef Google scholar
Hribernik KA, Rabe L, Thoben KD, Schumacher J. The product avatar as a product-instance-centric information management concept. Int J Prod Lifecycle Manag, 2006, 1(4): 367-379
CrossRef Google scholar
Jiang YS, Li M, Wu W, Wu XQ, Zhang XN, Huang XY, Zhong RY, Huang GGQ. Multi-domain ubiquitous digital twin model for information management of complex infrastructure systems. Adv Eng Inform, 2023, 56 101951
CrossRef Google scholar
Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, Bowman DMJS. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat Commun, 2015, 6: 7537
CrossRef Google scholar
Kaul R, Ossai C, Forkan ARM, Jayaraman PP, Zelcer J, Vaughan S, Wickramasinghe N. The role of AI for developing digital twins in healthcare: the case of cancer care. WIREs Data Min & Knowl, 2023, 13(1) e1480
CrossRef Google scholar
Kaur H, Sood SK. Fog-assisted IoT-enabled scalable network infrastructure for wildfire surveillance. J Netw Comput Appl, 2019, 144: 171-183
CrossRef Google scholar
Kaur H, Sood SK. Soft-computing-centric framework for wildfire monitoring, prediction and forecasting. Soft Comput, 2020, 24(13): 9651-9661
CrossRef Google scholar
Kaur H, Sood SK, Bhatia M. Cloud-assisted green IoT-enabled comprehensive framework for wildfire monitoring. Clust Comput, 2020, 23(2): 1149-1162
CrossRef Google scholar
Kramer HA, Mockrin MH, Alexandre PM, Radeloff VC. High wildfire damage in interface communities in California. Int J Wildland Fire, 2019, 28(9): 641
CrossRef Google scholar
Kritzinger W, Karner M, Traar G, Henjes J, Sihn W. Digital Twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine, 2018, 51(11): 1016-1022
CrossRef Google scholar
Lamsaf H, Lamsaf A, Kerroum MA, Almeida M. Assessing trends in wildland-urban interface fire research through text mining: a comprehensive analysis of published literature. J For Res, 2024, 35(1): 71
CrossRef Google scholar
Lattimer BY, Huang XY, Delichatsios MA, Levendis YA, Kochersberger K, Manzello S, Frank P, Jones T, Salvador J, Delgado C, Angelats E, Parés ME, Martín D, McAllister S, Suzuki S. Use of unmanned aerial systems in outdoor firefighting. Fire Technol, 2023, 59(6): 2961-2988
CrossRef Google scholar
Lautenberger C. Wildland fire modeling with an Eulerian level set method and automated calibration. Fire Saf J, 2013, 62: 289-298
CrossRef Google scholar
Lazarescu MT. Design of a WSN platform for long-term environmental monitoring for IoT applications. IEEE J Emerg Sel Top Circuits Syst, 2013, 3(1): 45-54
CrossRef Google scholar
Li LN, Aslam S, Wileman A, Perinpanayagam S. Digital twin in aerospace industry: a gentle introduction. IEEE Access, 2021, 10: 9543-9562
CrossRef Google scholar
Li XD, Zhang MX, Zhang SY, Liu JQ, Sun SF, Hu TX, Sun L. Simulating forest fire spread with cellular automation driven by a LSTM based speed model. Fire, 2022, 5(1): 13
CrossRef Google scholar
Li YZ, Wang ZL, Huang XY. Super real-time forecast of wildland fire spread by a dual-model deep learning method. J Environ Inform, 2024, 43(1): 65-79
CrossRef Google scholar
Linn R, Reisner J, Colman JJ, Winterkamp J. Studying wildfire behavior using FIRETEC. Int J Wildland Fire, 2002, 11(4): 233
CrossRef Google scholar
Liu MN, Fang SL, Dong HY, Xu CZ. Review of digital twin about concepts, technologies, and industrial applications. J Manuf Syst, 2021, 58: 346-361
CrossRef Google scholar
Lozano OM, Salis M, Ager AA, Arca B, Alcasena FJ, Monteiro AT, Finney MA, Del Giudice L, Scoccimarro E, Spano D. Assessing climate change impacts on wildfire exposure in Mediterranean areas. Risk Anal, 2017, 37(10): 1898-1916
CrossRef Google scholar
Ma X, Qi QL, Cheng JF, Tao F. A consistency method for digital twin model of human-robot collaboration. J Manuf Syst, 2022, 65: 550-563
CrossRef Google scholar
Madni AM, Madni CC, Lucero SD. Leveraging digital twin technology in model-based systems engineering. Systems, 2019, 7(1): 7
CrossRef Google scholar
Mandel J, Bennethum LS, Beezley JD, Coen JL, Douglas CC, Kim M, Vodacek A. A wildland fire model with data assimilation. Math Comput Simul, 2008, 79(3): 584-606
CrossRef Google scholar
Mandel J, Beezley JD, Coen JL, Kim M. Data assimilation for wildland fires: ensemble Kalman filters in coupled atmosphere-surface models. IEEE Control Systems, 2009, 29(3): 47-65
CrossRef Google scholar
Mandel J, Chen M, Franca LP, Johns C, Puhalskii A, Coen JL, Douglas CC, Kremens R, Vodacek A, Zhao W (2004) A note on dynamic data driven wildfire modeling. In: Bubak M, van Albada GD, Sloot PMA, Dongarra J (eds.) Computational Science-ICCS 2004, Lecture Notes in Computer Science, vol 3038, Springer, Berlin. https://doi.org/10.1007/978-3-540-24688-6_94
Martell DL. A review of recent forest and wildland fire management decision support systems research. Curr For Rep, 2015, 1(2): 128-137
CrossRef Google scholar
Mell W, Jenkins MA, Gould J, Cheney P. A physics-based approach to modelling grassland fires. Int J Wildland Fire, 2007, 16(1): 1-22
CrossRef Google scholar
Nakata M, Sano I, Mukai S, Kokhanovsky A. Characterization of wildfire smoke over complex terrain using satellite observations, ground-based observations, and meteorological models. Remote Sens, 2022, 14(10): 2344
CrossRef Google scholar
Negri E, Fumagalli L, Macchi M. A review of the roles of digital twin in CPS-based production systems. Procedia Manuf, 2017, 11: 939-948
CrossRef Google scholar
Nevins B. Rage blazes in New Mexico against failed government fire management. Green Left Weekly, 2022
CrossRef Google scholar
Opoku DGJ, Perera S, Osei-Kyei R, Rashidi M. Digital twin application in the construction industry: a literature review. J Build Eng, 2021, 40 102726
CrossRef Google scholar
Park M, Tran DQ, Bak J, Park S. Advanced wildfire detection using generative adversarial network-based augmented datasets and weakly supervised object localization. Int J Appl Earth Obs Geoinf, 2022, 114 103052
CrossRef Google scholar
Pastor E, Zárate L, Planas E, Arnaldos J. Mathematical models and calculation systems for the study of wildland fire behaviour. Prog Energy Combust Sci, 2003, 29(2): 139-153
CrossRef Google scholar
Piascik B, Vickers J, Lowry D, Scotti S, Stewart J, Calomino A (2010) Technology area 12: Materials, structures, mechanical systems, and manufacturing road map. NASA Office of Chief Technologist, 15–88. https://www.nasa.gov/pdf/501625main_TA12-MSMSM-DRAFT-Nov2010-A.pdf
Purcell W, Neubauer T, Mallinger K. Digital Twins in agriculture: challenges and opportunities for environmental sustainability. Curr Opin Environ Sustain, 2023, 61 101252
CrossRef Google scholar
Pylianidis C, Osinga S, Athanasiadis IN. Introducing digital twins to agriculture. Comput Electron Agric, 2021, 184 105942
CrossRef Google scholar
Pyne SJ (2019) Fire: a brief history[M]. University of Washington Press, Seattle. https://catalog.lib.uchicago.edu/vufind/Record/12649279
Qamsane Y, Chen CY, Balta EC, Kao BC, Mohan SB, Moyne J, Tilbury D, Barton K (2019) A unified digital twin framework for real-time monitoring and evaluation of smart manufacturing systems. In: 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada. 1394–1401. https://doi.org/10.1109/COASE.2019.8843269
Radeloff VC, Helmers DP, Kramer HA, Mockrin MH, Alexandre PM, Bar-Massada A, Butsic V, Hawbaker TJ, Martinuzzi S, Syphard AD, Stewart SI. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc Natl Acad Sci USA, 2018, 115(13): 3314-3319
CrossRef Google scholar
Rashkovetsky D, Mauracher F, Langer M, Schmitt M. Wildfire detection from multisensor satellite imagery using deep semantic segmentation. IEEE J Sel Top Appl Earth Obs Remote Sens, 2021, 14: 7001-7016
CrossRef Google scholar
Rein G, Huang XY. Smouldering Wildfires in Peatlands, Forests and the Arctic: Challenges and Perspectives. Curr Opin Environ Sci Health, 2021, 25 100296
CrossRef Google scholar
Rios O, Jahn W, Rein G. Forecasting wind-driven wildfires using an inverse modelling approach. Nat Hazards Earth Syst Sci, 2014, 14(6): 1491-1503
CrossRef Google scholar
Rios O, Pastor E, Valero MM, Planas E. Short-term fire front spread prediction using inverse modelling and airborne infrared images. Int J Wildland Fire, 2016, 25(10): 1033-1047
CrossRef Google scholar
Rios O, Jahn W, Pastor E, Valero MM, Planas E. Interpolation framework to speed up near-surface wind simulations for data-driven wildfire applications. Int J Wildland Fire, 2018, 27(4): 257
CrossRef Google scholar
Ronchi E, Gwynne S, Rein G, Wadhwani R, Intini P, Bergstedt A (2017) e-Sanctuary: open multi-physics framework for modelling wildfire urban evacuation. Fire Protection Research Foundation FPRF-2017-22, Quincy, Mass., USA. https://portal.research.lu.se/en/publications/e-sanctuary-open-multi-physics-framework-for-modelling-wildfire-u
Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. USDA Forests Service Research Paper INT-115, Intermountain Forest and Range Experiment Station, Ogden, USA.
Running SW. Is global warming causing more, larger wildfires?. Science, 2006, 313(5789): 927-928
CrossRef Google scholar
Sacks R, Brilakis I, Pikas E, Xie HS, Girolami M. Construction with digital twin information systems. Data Centric Eng, 2020, 1 e14
CrossRef Google scholar
Schrotter G, Hürzeler C. The digital twin of the city of Zurich for urban planning. PFG–J Photogramm Remote Sens Geoinf Sci, 2020, 88(1): 99-112
Semeraro C, Lezoche M, Panetto H, Dassisti M. Digital twin paradigm: a systematic literature review. Comput Ind, 2021, 130 103469
CrossRef Google scholar
Shamsoshoara A, Afghah F, Razi A, Zheng LM, Fulé PZ, Blasch E. Aerial imagery pile burn detection using deep learning: the FLAME dataset. Comput Netw, 2021, 193 108001
CrossRef Google scholar
Sousa MJ, Moutinho A, Almeida M. Wildfire detection using transfer learning on augmented datasets. Expert Syst Appl, 2020, 142 112975
CrossRef Google scholar
Sullivan AL. Wildland surface fire spread modelling, 1990–2007. 1: physical and quasi-physical models. Int J Wildland Fire, 2009, 18(4): 349
CrossRef Google scholar
Sullivan AL. Wildland surface fire spread modelling, 1990–2007. 2: empirical and quasi-empirical models. Int J Wildland Fire, 2009, 18(4): 369
CrossRef Google scholar
Sullivan AL. Wildland surface fire spread modelling, 1990–2007. 3: simulation and mathematical analogue models. Int J Wildland Fire, 2009, 18(4): 387
CrossRef Google scholar
Tao F, Zhang M. Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. IEEE Access, 2017, 5: 20418-20427
CrossRef Google scholar
Tao F, Zhang H, Liu A, Nee AYC. Digital twin in industry: state-of-the-art. IEEE Trans Ind Inform, 2019, 15(4): 2405-2415
CrossRef Google scholar
Tao F, Xiao B, Qi QL, Cheng JF, Ji P. Digital twin modeling. J Manuf Syst, 2022, 64: 372-389
CrossRef Google scholar
Thangavel K, Spiller D, Sabatini R, Amici S, Sasidharan ST, Fayek H, Marzocca P. Autonomous satellite wildfire detection using hyperspectral imagery and neural networks: a case study on Australian wildfire. Remote Sens, 2023, 15(3): 720
CrossRef Google scholar
Thompson MP, Calkin DE. Uncertainty and risk in wildland fire management: a review. J Environ Manage, 2011, 92(8): 1895-1909
CrossRef Google scholar
Toan NT, Thanh Cong P, Viet Hung NQ, Jo J (2019) A deep learning approach for early wildfire detection from hyperspectral satellite images. In: 2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA), Daejeon, Korea (South). pp 38–45. https://doi.org/10.1109/RITAPP.2019.8932740
Van Wilgen BW, Forsyth GG, De Klerk H, Das S, Khuluse S, Schmitz P. Fire management in Mediterranean-climate shrublands: a case study from the cape fynbos. South Africa. J Appl Ecol, 2010, 47(3): 631-638
CrossRef Google scholar
Vankat JL. Fire and man in Sequoia National Park. Ann Assoc Am Geogr, 1977, 67(1): 17-27
CrossRef Google scholar
Verma S, Kaur S, Rawat DB, Xi C, Alex LT, Zaman Jhanjhi N. Intelligent framework using IoT-based WSNs for wildfire detection. IEEE Access, 2021, 9: 48185-48196
CrossRef Google scholar
Wang MS, Jiang LC, Yue P, Yu DY, Tuo TY. FASDD: an open-access 100,000-level flame and smoke detection dataset for deep learning in fire detection 2023 Earth Syst Sci Data Discuss. (Preprint)
CrossRef Google scholar
Weber RO. Modelling fire spread through fuel beds. Prog Energy Combust Sci, 1991, 17(1): 67-82
CrossRef Google scholar
Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. Warming and earlier spring increase western US forest wildfire activity. Science, 2006, 313(5789): 940-943
CrossRef Google scholar
White G, Zink A, Codecá L, Clarke S. A digital twin smart city for citizen feedback. Cities, 2021, 110 103064
CrossRef Google scholar
Witze A. The Arctic is burning like never before—and that’s bad news for climate change. Nature, 2020, 585: 336-337
CrossRef Google scholar
Wu R, Scully-Allison C, Carthen C, Garcia A, Hoang R, Lewis C, Quijada RS, Smith J, Dascalu SM, Harris FC Jr. vFirelib: a GPU-based fire simulation and visualization tool. SoftwareX, 2023, 23 101411
CrossRef Google scholar
Xu NZ, Lovreglio R, Kuligowski ED, Cova TJ, Nilsson D, Zhao XL. Predicting and assessing wildfire evacuation decision-making using machine learning: findings from the 2019 kincade fire. Fire Technol, 2023, 59(2): 793-825
CrossRef Google scholar
Yan J, Liu ZF, Zhang CX, Zhang T, Zhang YZ, Yang CB. Research on flexible job shop scheduling under finite transportation conditions for digital twin workshop. Robot Comput Integr Manuf, 2021, 72 102198
CrossRef Google scholar
Ye ZJ, Ye Y, Zhang CP, Zhang ZM, Li W, Wang XJ, Wang L, Wang LB. A digital twin approach for tunnel construction safety early warning and management. Comput Ind, 2023, 144 103783
CrossRef Google scholar
Yin Y, Zheng P, Li CX, Wang LH. A state-of-the-art survey on augmented reality-assisted digital twin for futuristic human-centric industry transformation. Robot Comput Integr Manuf, 2023, 81 102515
CrossRef Google scholar
Yoo S, Song J. Rapid prediction of wildfire spread using ensemble Kalman filter and polyline simplification. Environ Model Softw, 2023, 160 105610
CrossRef Google scholar
Zhai CJ, Zhang SY, Cao ZL, Wang XM. Learning-based prediction of wildfire spread with real-time rate of spread measurement. Combust Flame, 2020, 215: 333-341
CrossRef Google scholar
Zhang C, Collin A, Moireau P, Trouvé A, Rochoux MC. Front shape similarity measure for data-driven simulations of wildland fire spread based on state estimation: application to the RxCADRE field-scale experiment. Proc Combust Inst, 2019, 37(3): 4201-4209
CrossRef Google scholar
Zhang C, Collin A, Moireau P, Trouvé A, Rochoux MC. State-parameter estimation approach for data-driven wildland fire spread modeling: application to the 2012 RxCADRE S5 field-scale experiment. Fire Saf J, 2019, 105: 286-299
CrossRef Google scholar
Zhang FQ, Zhao PC, Thiyagalingam J, Kirubarajan T. Terrain-influenced incremental watchtower expansion for wildfire detection. Sci Total Environ, 2019, 654: 164-176
CrossRef Google scholar
Zhang TH, Wang ZL, Zeng YF, Wu XQ, Huang XY, Xiao F. Building artificial-intelligence digital fire (AID-fire) system: a real-scale demonstration. J Build Eng, 2022, 62 105363
CrossRef Google scholar
Zhang XN, Jiang YS, Wu XQ, Nan ZJ, Jiang YQ, Shi JH, Zhang YX, Huang XY, Huang GGQ. AIoT-enabled digital twin system for smart tunnel fire safety management. Dev Built Environ, 2024, 18 100381
CrossRef Google scholar
Zhao HR, Liu JH, Xiong H, Zhuang CB, Miao T, Liu JS, Wang B. 3D visualization real-time monitoring method for digital twin workshop. Comput Integr Manuf Syst, 2019, 25(6): 1432-1443
Zhou TJ, Ding L, Ji J, Luo SF. VWETKF for wildfire propagation prediction employing observations with missing values and/or spatial variations of error variance. Proc Combust Inst, 2021, 38(3): 5091-5099
CrossRef Google scholar
Zhu ZX, Liu C, Xu X. Visualisation of the Digital Twin data in manufacturing by using Augmented Reality. Procedia CIRP, 2019, 81: 898-903
CrossRef Google scholar
Zhuang CB, Miao T, Liu JH, Xiong H. The connotation of digital twin, and the construction and application method of shop-floor digital twin. Robot Comput Integr Manuf, 2021, 68 102075
CrossRef Google scholar
Funding
The Hong Kong Polytechnic University

Accesses

Citations

Detail

Sections
Recommended

/