Gene flow extension between Korean pine populations and its impact on genetic diversity and structure in Northeast China

David Kombi Kaviriri , Qun Zhang , Shuoran Tang , Hailong Shen , Yuhua Li , Ling Yang

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 21

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 21 DOI: 10.1007/s11676-024-01808-5
Original Paper

Gene flow extension between Korean pine populations and its impact on genetic diversity and structure in Northeast China

Author information +
History +
PDF

Abstract

Pinus koraiensis (Sieb. et Zucc.) is a coniferous tree species naturally distributed in northeastern China. However, the effects of gene flow on its genetic diversity and structure remain unclear. This study investigates these dynamics in seven populations using ten microsatellite markers. The results show a high level of genetic diversity within the populations (Ho = 0.633, He = 0.746). In addition, molecular analysis of variance (AMOVA) shows that 98% of genetic diversity occurs within populations, with minimal differentiation between populations (Fst = 0.009–0.033). Gene flow analysis shows significant migration rates between specific population pairs, particularly C-TH (87%), LS-Y (69%) and TH-LS (69%), suggesting genetic homogenization. Bayesian clustering (STRUCTURE) supports admixture and weak population differentiation. Environmental factors, especially temperature-related variables, significantly influence genetic patterns. Partial Mantel tests and multiple matrix regression show strong correlations between genetic distance and adaptations to cold temperatures (bio6 and bio11). Overall, this study emphasizes the robust genetic diversification and high migration rates in the populations of P. koraiensis and highlights their resilience. These results emphasize the importance of incorporating genetic and ecological factors into conservation strategies for sustainable forest management. This research provides valuable insights into the complex interplay of genetic variation, gene flow and environmental influences in forest tree species and improves our understanding of their adaptive mechanisms.

Cite this article

Download citation ▾
David Kombi Kaviriri, Qun Zhang, Shuoran Tang, Hailong Shen, Yuhua Li, Ling Yang. Gene flow extension between Korean pine populations and its impact on genetic diversity and structure in Northeast China. Journal of Forestry Research, 2025, 36(1): 21 DOI:10.1007/s11676-024-01808-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S. Adaptation, migration or extirpation: climate change outcomes for tree populations Evol Appl, 2008, 1(1): 95-111.

[2]

Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O. Potential for evolutionary responses to climate change–evidence from tree populations Glob Chang Biol, 2013, 19(6): 1645-1661.

[3]

Bao L, Kudureti A, Bai W, Chen R, Wang T, Wang H, Ge J. Contributions of multiple refugia during the last glacial period to current mainland populations of Korean pine (Pinus koraiensis) Sci Rep, 2015, 5(1): 18608-18618.

[4]

Bonan GB, Shugart HH. Environmental factors and ecological processes in boreal forests Ann Rev Ecol Syst, 1989, 20(1): 1-28.

[5]

Börner J, Schulz D, Wunder S, Pfaff A. The effectiveness of forest conservation policies and programs Annu Rev Resour Econ, 2020, 12: 45-64.

[6]

Chun LJ. The broad-leaved Korean pine forest in China Gen Tech Rep Int, 1981, 309: 81

[7]

Collevatti RG, Grattapaglia D, Hay JD. Population genetic structure of the endangered tropical tree species Caryocar brasiliense, based on variability at microsatellite loci Mol Ecol, 2001, 10(2): 349-356.

[8]

Davis MB, Shaw RG, Etterson JR. Evolutionary responses to changing climate Ecology, 2005, 86(7): 1704-1714.

[9]

Dong Y, Liu Y. Response of Korean pine’s functional traits to geography and climate PLoS ONE, 2017, 12(9. e0184051

[10]

Du J, Zhang Z, Zhang H, Junhong T. EST–SSR marker development and transcriptome sequencing analysis of different tissues of Korean pine (Pinus koraiensis Sieb. et Zucc.) Biotechnol Biotechnol Equip, 2017, 31 4): 679-689.

[11]

François O. Running structure-like population genetic analyses with R. R tutorials in population genetics, U Grenoble-Alpes, 2016, 1: 1-9

[12]

García-Roa R, Garcia-Gonzalez F, Noble DW, Carazo P. Temperature as a modulator of sexual selection Biol Rev, 2020, 95(6): 1607-1629.

[13]

Ghazi MG, Sharma SP, Tuboi C, Angom S, Gurumayum T, Nigam P, Hussain SA. Population genetics and evolutionary history of the endangered Eld’s deer (Rucervus eldii) with implications for planning species recovery Sci Rep, 2021, 11(1): 2564-2550.

[14]

Guries RP, Ledig FT (1981) Genetic structure of populations and differentiation in forest trees. In: Proc Symp Isozymes N Am For Trees For Insects. Conkle MT (ed). US Dep Agric-For Ser Pac Southwest For Range Exp Stn Gen Tech Rep PSW-48, pp 42–47

[15]

Helmuth B, Kingsolver JG, Carrington E. Biophysics, physiological ecology, and climate change: Does mechanism matter? Annu Rev Physiol, 2005, 67: 177-201.

[16]

Jin Y, Ma Y, Wang S, Hu XG, Huang LS, Li Y, Wang XR, Mao JF. Genetic evaluation of the breeding population of a valuable reforestation conifer Platycladus orientalis (Cupressaceae) Sci Rep, 2016, 6(1): 34821.

[17]

Jombart T. adegenet: a R package for the multivariate analysis of genetic markers Bioinformatics, 2008, 24(11): 1403-1405.

[18]

Kaviriri DK, Zhang Q, Zhang X, Jiang L, Zhang J, Wang J, Khasa DP, You X, Zhao X. Phenotypic variability and genetic diversity in a Pinus koraiensis clonal trial in Northeastern China Genes, 2020, 11(6): 673-691.

[19]

Kim ZS, Hwang JW, Lee SW, Yang C, Gorovoy PG. Genetic variation of Korean pine (Pinus koraiensis Sieb. et Zucc.) at allozyme and RAPD markers in Korea, China and Russia Silvae Genet, 2005, 54(1–6): 235-246.

[20]

Ledig FT, Capó-Arteaga MA, Hodgskiss PD, Sbay H, Flores-López C, Thompson Conkle M, Bermejo-Velázquez B. Genetic diversity and the mating system of a rare Mexican piñon, Pinus pinceana, and a comparison with Pinus maximartinezii (Pinaceae) Am J Bot, 2001, 88(11): 1977-1987.

[21]

Leites L, Benito Garzón M. Forest tree species adaptation to climate across biomes: building on the legacy of ecological genetics to anticipate responses to climate change Glob Change Biol, 2023, 29(17): 4711-4730.

[22]

Li YL, Liu JX. StructureSelector: a web-based software to select and visualize the optimal number of clusters using multiple methods Mol Ecol Resour, 2018, 18(1): 176-177.

[23]

Li MJ, Ng MK, Cheung YM, Huang JZ. Agglomerative fuzzy k-means clustering algorithm with selection of number of clusters IEEE Trans Knowl Data Eng, 2008, 20(11): 1519-1534.

[24]

Li X, Liu X, Wei J, Li Y, Tigabu M, Zhao X. Development and transferability of EST-SSR markers for Pinus koraiensis from cold-stressed transcriptome through Illumina sequencing Genes, 2020, 11(5): 500-514.

[25]

Li X, Zhao M, Xu Y, Li Y, Tigabu M, Zhao X. Genetic diversity and population differentiation of Pinus koraiensis in China Hortic, 2021, 7(5): 104-113.

[26]

Liang L. Beyond the bioclimatic law: geographic adaptation patterns of temperate plant phenology Prog Phys Geogr, 2016, 40(6): 11-834.

[27]

Linder HP, Bykova O, Dyke J, Etienne RS, Hickler T, Kühn I, Marion G, Ohlemüller R, Schymanski SJ, Singer A. Biotic modifiers, environmental modulation and species distribution models J Biogeogr, 2012, 39(12): 2179-2190.

[28]

Manzello SL, Maranghides A, Shields JR, Mell WE, Hayashi Y, Nii D. Mass and size distribution of firebrands generated from burning Korean pine (Pinus koraiensis) trees Fire Mater, 2009, 33(1): 21-31.

[29]

Matallana-Ramirez LP, Whetten RW, Sanchez GM, Payn KG. Breeding for climate change resilience: a case study of loblolly pine (Pinus taeda L.) in North America Front Plant Sci, 2021, 12: 606908.

[30]

Mori AS, Lertzman KP, Gustafsson L. Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology J Appl Ecol, 2017, 54(1): 12-27.

[31]

Naimi B, Araújo MB. sdm: a reproducible and extensible R platform for species distribution modelling Ecography, 2016, 39(4): 368-375.

[32]

Parthiban S, Govindaraj P, Senthilkumar S. Comparison of relative efficiency of genomic SSR and EST-SSR markers in estimating genetic diversity in sugarcane 3 Biotech, 2018, 8: 1-12.

[33]

Pautasso M. Geographical genetics and the conservation of forest trees Perspect Plant Ecol Evol Syst, 2009, 11(3): 157-189.

[34]

Peakall RO, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research Mol Ecol Notes, 2006, 6(1): 288-295.

[35]

Pinto CB, Marques R, Dalmaso CA, de Souza Kulmann MS, Deliberali I, Schumacher MV, de Oliveira Junior JC. Relationship between edaphoclimatic attributes and productivity of loblolly pine (Pinus taeda L.) in southern Brazil For Ecol Manag, 2023, 544: 121162.

[36]

Porras-Hurtado L, Ruiz Y, Santos C, Phillips C, Carracedo Á, Lareu MV. An overview of STRUCTURE: applications, parameter settings, and supporting software Front Genet, 2013, 4: 98-111.

[37]

Prunier J, Verta JP, MacKay JJ. Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function New Phytol, 2016, 209(1): 44-62.

[38]

Rousset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance Genetics, 1997, 145(4): 1219-1228.

[39]

Rungis D, Bérubé Y, Zhang J, Ralph S, Ritland CE, Ellis BE, Douglas C, Bohlmann J, Ritland K. Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags Theor Appl Genet, 2004, 109: 1283-1294.

[40]

Serrote CML, Reiniger LRS, Silva KB, dos Santos Rabaiolli SM, Stefanel CM. Determining the polymorphism information content of a molecular marker Gene, 2020, 726. 144175

[41]

Soto A, Robledo-Arnuncio JJ, González-Martínez SC, Smouse PE, Alía R. Climatic niche and neutral genetic diversity of the six Iberian pine species: a retrospective and prospective view Mol Ecol, 2010, 19(7): 396-1409.

[42]

Sui X, Feng FJ, Zhao D, Xing M, Sun XY, Han SJ, Li MH. Mating system patterns of natural populations of Pinus koraiensis along its post-glacial colonization route in Northeastern China Genet Mol Res, 2015, 14(2): 4113-4124.

[43]

Sundqvist L, Keenan K, Zackrisson M, Prodöhl P, Kleinhans D. Directional genetic differentiation and relative migration Ecol Evol, 2016, 6(11): 3461-3475.

[44]

Takezaki N, Nei M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA Genetics, 1996, 144(1): 389-399.

[45]

Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11 Mol Biol Evol, 2021, 38(7): 3022-3027.

[46]

Tong YW, Lewis BJ, Zhou WM, Mao CR, Wang Y, Zhou L, Yu DP, Dai LM, Qi L. Genetic diversity and population structure of natural Pinus koraiensis populations Forests, 2019, 11(1): 39-51.

[47]

Wang T, O'Neill GA, Aitken SN. Integrating environmental and genetic effects to predict responses of tree populations to climate Ecol Appl, 2010, 20(1): 153-163.

[48]

Warwell MV, Shaw RG. Climate-related genetic variation in a threatened tree species, Pinus Albicaulis Am J Bot, 2017, 104(8): 1205-1218.

[49]

Wei J, Li X, Xu H, Wang Y, Zang C, Xu J, Pei X, Zhao X. Evaluation of the genetic diversity of Pinus koraiensis by EST-SSR and its management, utilization and protection For Ecol Manag, 2022, 505(1): 119882-119894.

[50]

Woo-Seok K, Watts P The plant geography of Korea: with an emphasis on the alpine zones, 2012 Springer Science & Business Media 19

[51]

Yan P, Xie Z, Feng K, Qiu X, Zhang L, Zhang H. Genetic diversity analysis and fingerprint construction of Korean pine (Pinus koraiensis) clonal seed orchard Front Plant Sci, 2023, 13: 1079571.

RIGHTS & PERMISSIONS

Northeast Forestry University

AI Summary AI Mindmap
PDF

320

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/