Gene flow extension between Korean pine populations and its impact on genetic diversity and structure in Northeast China

David Kombi Kaviriri, Qun Zhang, Shuoran Tang, Hailong Shen, Yuhua Li, Ling Yang

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 21.

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 21. DOI: 10.1007/s11676-024-01808-5
Original Paper

Gene flow extension between Korean pine populations and its impact on genetic diversity and structure in Northeast China

Author information +
History +

Abstract

Pinus koraiensis (Sieb. et Zucc.) is a coniferous tree species naturally distributed in northeastern China. However, the effects of gene flow on its genetic diversity and structure remain unclear. This study investigates these dynamics in seven populations using ten microsatellite markers. The results show a high level of genetic diversity within the populations (Ho = 0.633, He = 0.746). In addition, molecular analysis of variance (AMOVA) shows that 98% of genetic diversity occurs within populations, with minimal differentiation between populations (Fst = 0.009–0.033). Gene flow analysis shows significant migration rates between specific population pairs, particularly C-TH (87%), LS-Y (69%) and TH-LS (69%), suggesting genetic homogenization. Bayesian clustering (STRUCTURE) supports admixture and weak population differentiation. Environmental factors, especially temperature-related variables, significantly influence genetic patterns. Partial Mantel tests and multiple matrix regression show strong correlations between genetic distance and adaptations to cold temperatures (bio6 and bio11). Overall, this study emphasizes the robust genetic diversification and high migration rates in the populations of P. koraiensis and highlights their resilience. These results emphasize the importance of incorporating genetic and ecological factors into conservation strategies for sustainable forest management. This research provides valuable insights into the complex interplay of genetic variation, gene flow and environmental influences in forest tree species and improves our understanding of their adaptive mechanisms.

Cite this article

Download citation ▾
David Kombi Kaviriri, Qun Zhang, Shuoran Tang, Hailong Shen, Yuhua Li, Ling Yang. Gene flow extension between Korean pine populations and its impact on genetic diversity and structure in Northeast China. Journal of Forestry Research, 2025, 36(1): 21 https://doi.org/10.1007/s11676-024-01808-5

References

Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S. Adaptation, migration or extirpation: climate change outcomes for tree populations Evol Appl, 2008, 1(1): 95-111.
CrossRef Google scholar
Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O. Potential for evolutionary responses to climate change–evidence from tree populations Glob Chang Biol, 2013, 19(6): 1645-1661.
CrossRef Google scholar
Bao L, Kudureti A, Bai W, Chen R, Wang T, Wang H, Ge J. Contributions of multiple refugia during the last glacial period to current mainland populations of Korean pine (Pinus koraiensis) Sci Rep, 2015, 5(1): 18608-18618.
CrossRef Google scholar
Bonan GB, Shugart HH. Environmental factors and ecological processes in boreal forests Ann Rev Ecol Syst, 1989, 20(1): 1-28.
CrossRef Google scholar
Börner J, Schulz D, Wunder S, Pfaff A. The effectiveness of forest conservation policies and programs Annu Rev Resour Econ, 2020, 12: 45-64.
CrossRef Google scholar
Chun LJ. The broad-leaved Korean pine forest in China Gen Tech Rep Int, 1981, 309: 81
Collevatti RG, Grattapaglia D, Hay JD. Population genetic structure of the endangered tropical tree species Caryocar brasiliense, based on variability at microsatellite loci Mol Ecol, 2001, 10(2): 349-356.
CrossRef Google scholar
Davis MB, Shaw RG, Etterson JR. Evolutionary responses to changing climate Ecology, 2005, 86(7): 1704-1714.
CrossRef Google scholar
Dong Y, Liu Y. Response of Korean pine’s functional traits to geography and climate PLoS ONE, 2017, 12(9. e0184051
CrossRef Google scholar
Du J, Zhang Z, Zhang H, Junhong T. EST–SSR marker development and transcriptome sequencing analysis of different tissues of Korean pine (Pinus koraiensis Sieb. et Zucc.) Biotechnol Biotechnol Equip, 2017, 31 4): 679-689.
CrossRef Google scholar
François O. Running structure-like population genetic analyses with R. R tutorials in population genetics, U Grenoble-Alpes, 2016, 1: 1-9
García-Roa R, Garcia-Gonzalez F, Noble DW, Carazo P. Temperature as a modulator of sexual selection Biol Rev, 2020, 95(6): 1607-1629.
CrossRef Google scholar
Ghazi MG, Sharma SP, Tuboi C, Angom S, Gurumayum T, Nigam P, Hussain SA. Population genetics and evolutionary history of the endangered Eld’s deer (Rucervus eldii) with implications for planning species recovery Sci Rep, 2021, 11(1): 2564-2550.
CrossRef Google scholar
Guries RP, Ledig FT (1981) Genetic structure of populations and differentiation in forest trees. In: Proc Symp Isozymes N Am For Trees For Insects. Conkle MT (ed). US Dep Agric-For Ser Pac Southwest For Range Exp Stn Gen Tech Rep PSW-48, pp 42–47
Helmuth B, Kingsolver JG, Carrington E. Biophysics, physiological ecology, and climate change: Does mechanism matter? Annu Rev Physiol, 2005, 67: 177-201.
CrossRef Google scholar
Jin Y, Ma Y, Wang S, Hu XG, Huang LS, Li Y, Wang XR, Mao JF. Genetic evaluation of the breeding population of a valuable reforestation conifer Platycladus orientalis (Cupressaceae) Sci Rep, 2016, 6(1): 34821.
CrossRef Google scholar
Jombart T. adegenet: a R package for the multivariate analysis of genetic markers Bioinformatics, 2008, 24(11): 1403-1405.
CrossRef Google scholar
Kaviriri DK, Zhang Q, Zhang X, Jiang L, Zhang J, Wang J, Khasa DP, You X, Zhao X. Phenotypic variability and genetic diversity in a Pinus koraiensis clonal trial in Northeastern China Genes, 2020, 11(6): 673-691.
CrossRef Google scholar
Kim ZS, Hwang JW, Lee SW, Yang C, Gorovoy PG. Genetic variation of Korean pine (Pinus koraiensis Sieb. et Zucc.) at allozyme and RAPD markers in Korea, China and Russia Silvae Genet, 2005, 54(1–6): 235-246.
CrossRef Google scholar
Ledig FT, Capó-Arteaga MA, Hodgskiss PD, Sbay H, Flores-López C, Thompson Conkle M, Bermejo-Velázquez B. Genetic diversity and the mating system of a rare Mexican piñon, Pinus pinceana, and a comparison with Pinus maximartinezii (Pinaceae) Am J Bot, 2001, 88(11): 1977-1987.
CrossRef Google scholar
Leites L, Benito Garzón M. Forest tree species adaptation to climate across biomes: building on the legacy of ecological genetics to anticipate responses to climate change Glob Change Biol, 2023, 29(17): 4711-4730.
CrossRef Google scholar
Li YL, Liu JX. StructureSelector: a web-based software to select and visualize the optimal number of clusters using multiple methods Mol Ecol Resour, 2018, 18(1): 176-177.
CrossRef Google scholar
Li MJ, Ng MK, Cheung YM, Huang JZ. Agglomerative fuzzy k-means clustering algorithm with selection of number of clusters IEEE Trans Knowl Data Eng, 2008, 20(11): 1519-1534.
CrossRef Google scholar
Li X, Liu X, Wei J, Li Y, Tigabu M, Zhao X. Development and transferability of EST-SSR markers for Pinus koraiensis from cold-stressed transcriptome through Illumina sequencing Genes, 2020, 11(5): 500-514.
CrossRef Google scholar
Li X, Zhao M, Xu Y, Li Y, Tigabu M, Zhao X. Genetic diversity and population differentiation of Pinus koraiensis in China Hortic, 2021, 7(5): 104-113.
CrossRef Google scholar
Liang L. Beyond the bioclimatic law: geographic adaptation patterns of temperate plant phenology Prog Phys Geogr, 2016, 40(6): 11-834.
CrossRef Google scholar
Linder HP, Bykova O, Dyke J, Etienne RS, Hickler T, Kühn I, Marion G, Ohlemüller R, Schymanski SJ, Singer A. Biotic modifiers, environmental modulation and species distribution models J Biogeogr, 2012, 39(12): 2179-2190.
CrossRef Google scholar
Manzello SL, Maranghides A, Shields JR, Mell WE, Hayashi Y, Nii D. Mass and size distribution of firebrands generated from burning Korean pine (Pinus koraiensis) trees Fire Mater, 2009, 33(1): 21-31.
CrossRef Google scholar
Matallana-Ramirez LP, Whetten RW, Sanchez GM, Payn KG. Breeding for climate change resilience: a case study of loblolly pine (Pinus taeda L.) in North America Front Plant Sci, 2021, 12: 606908.
CrossRef Google scholar
Mori AS, Lertzman KP, Gustafsson L. Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology J Appl Ecol, 2017, 54(1): 12-27.
CrossRef Google scholar
Naimi B, Araújo MB. sdm: a reproducible and extensible R platform for species distribution modelling Ecography, 2016, 39(4): 368-375.
CrossRef Google scholar
Parthiban S, Govindaraj P, Senthilkumar S. Comparison of relative efficiency of genomic SSR and EST-SSR markers in estimating genetic diversity in sugarcane 3 Biotech, 2018, 8: 1-12.
CrossRef Google scholar
Pautasso M. Geographical genetics and the conservation of forest trees Perspect Plant Ecol Evol Syst, 2009, 11(3): 157-189.
CrossRef Google scholar
Peakall RO, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research Mol Ecol Notes, 2006, 6(1): 288-295.
CrossRef Google scholar
Pinto CB, Marques R, Dalmaso CA, de Souza Kulmann MS, Deliberali I, Schumacher MV, de Oliveira Junior JC. Relationship between edaphoclimatic attributes and productivity of loblolly pine (Pinus taeda L.) in southern Brazil For Ecol Manag, 2023, 544: 121162.
CrossRef Google scholar
Porras-Hurtado L, Ruiz Y, Santos C, Phillips C, Carracedo Á, Lareu MV. An overview of STRUCTURE: applications, parameter settings, and supporting software Front Genet, 2013, 4: 98-111.
CrossRef Google scholar
Prunier J, Verta JP, MacKay JJ. Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function New Phytol, 2016, 209(1): 44-62.
CrossRef Google scholar
Rousset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance Genetics, 1997, 145(4): 1219-1228.
CrossRef Google scholar
Rungis D, Bérubé Y, Zhang J, Ralph S, Ritland CE, Ellis BE, Douglas C, Bohlmann J, Ritland K. Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags Theor Appl Genet, 2004, 109: 1283-1294.
CrossRef Google scholar
Serrote CML, Reiniger LRS, Silva KB, dos Santos Rabaiolli SM, Stefanel CM. Determining the polymorphism information content of a molecular marker Gene, 2020, 726. 144175
CrossRef Google scholar
Soto A, Robledo-Arnuncio JJ, González-Martínez SC, Smouse PE, Alía R. Climatic niche and neutral genetic diversity of the six Iberian pine species: a retrospective and prospective view Mol Ecol, 2010, 19(7): 396-1409.
CrossRef Google scholar
Sui X, Feng FJ, Zhao D, Xing M, Sun XY, Han SJ, Li MH. Mating system patterns of natural populations of Pinus koraiensis along its post-glacial colonization route in Northeastern China Genet Mol Res, 2015, 14(2): 4113-4124.
CrossRef Google scholar
Sundqvist L, Keenan K, Zackrisson M, Prodöhl P, Kleinhans D. Directional genetic differentiation and relative migration Ecol Evol, 2016, 6(11): 3461-3475.
CrossRef Google scholar
Takezaki N, Nei M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA Genetics, 1996, 144(1): 389-399.
CrossRef Google scholar
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11 Mol Biol Evol, 2021, 38(7): 3022-3027.
CrossRef Google scholar
Tong YW, Lewis BJ, Zhou WM, Mao CR, Wang Y, Zhou L, Yu DP, Dai LM, Qi L. Genetic diversity and population structure of natural Pinus koraiensis populations Forests, 2019, 11(1): 39-51.
CrossRef Google scholar
Wang T, O'Neill GA, Aitken SN. Integrating environmental and genetic effects to predict responses of tree populations to climate Ecol Appl, 2010, 20(1): 153-163.
CrossRef Google scholar
Warwell MV, Shaw RG. Climate-related genetic variation in a threatened tree species, Pinus Albicaulis Am J Bot, 2017, 104(8): 1205-1218.
CrossRef Google scholar
Wei J, Li X, Xu H, Wang Y, Zang C, Xu J, Pei X, Zhao X. Evaluation of the genetic diversity of Pinus koraiensis by EST-SSR and its management, utilization and protection For Ecol Manag, 2022, 505(1): 119882-119894.
CrossRef Google scholar
Woo-Seok K, Watts P The plant geography of Korea: with an emphasis on the alpine zones, 2012 Springer Science & Business Media 19
Yan P, Xie Z, Feng K, Qiu X, Zhang L, Zhang H. Genetic diversity analysis and fingerprint construction of Korean pine (Pinus koraiensis) clonal seed orchard Front Plant Sci, 2023, 13: 1079571.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/