A modeling approach to determine substitutive tree species for sweet chestnut in stands affected by ink disease

Malve Heinz, Simone Prospero

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 24.

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 24. DOI: 10.1007/s11676-024-01805-8
Original Paper

A modeling approach to determine substitutive tree species for sweet chestnut in stands affected by ink disease

Author information +
History +

Abstract

Biological invasions, driven mainly by human activities, pose significant threats to global ecosystems and economies, with fungi and fungal-like oomycetes playing a pivotal role. Ink disease, caused by Phytophthora cinnamomi and P. × cambivora, is a growing concern for sweet chestnut stands (Castanea sativa) in Europe. Since both pathogens are thermophilic organisms, ongoing climate change will likely exacerbate their impact. In this study, we applied species distribution modeling techniques to identify potential substitutive species for sweet chestnut in the light of future climate scenarios SSP126 and SSP370 in southern Switzerland. Using the presence-only machine learning algorithm MaxEnt and leveraging occurrence data from the global dataset GBIF, we delineated the current and projected (2070–2100) distribution of 28 tree species. Several exotic species emerged as valuable alternatives to sweet chestnut, although careful consideration of all potential ecological consequences is required. We also identified several native tree species as promising substitutes, offering ecological benefits and potential adaptability to climatic conditions. Since species diversification fosters forest resilience, we also determined communities of alternative species that can be grown together. Our findings represent a valuable decision tool for forest managers confronted with the challenges posed by ink disease and climate change. Given that, even in absence of disease, sweet chestnut is not a future-proof tree species in the study region, the identified species could offer a pathway toward resilient and sustainable forests within the entire chestnut belt.

Cite this article

Download citation ▾
Malve Heinz, Simone Prospero. A modeling approach to determine substitutive tree species for sweet chestnut in stands affected by ink disease. Journal of Forestry Research, 2025, 36(1): 24 https://doi.org/10.1007/s11676-024-01805-8

References

Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models Ecography, 2015, 38(5): 541-545.
CrossRef Google scholar
Alcaide F, Solla A, Cuenca B, Martín . Molecular evidence of introgression of Asian germplasm into a natural Castanea sativa forest in Spain Forestry (Lond), 2022, 95(1): 95-104.
CrossRef Google scholar
Amaral AG, Munhoz CBR, Walter BMT, Aguirre-Gutiérrez J, Raes N. Richness pattern and phytogeography of the Cerrado herb-shrub flora and implications for conservation J Veg Sci, 2017, 28(4): 848-858.
CrossRef Google scholar
Anagnostakis SL. Chestnut blight: the classical problem of an introduced pathogen Mycologia, 1987, 79(1): 23.
CrossRef Google scholar
Bauhus J, Forrester DI, Gardiner B, Jactel H, Vallejo R, Pretzsch H Pretzsch H, Forrester DI, Bauhus J. Ecological stability of mixed-species forests mixed-species forests, 2017 Berlin Heidelberg Springer 337-3824.
CrossRef Google scholar
Booth TH. Species distribution modelling tools and databases to assist managing forests under climate change For Ecol Manag, 2018, 430: 196-203.
CrossRef Google scholar
Bosso L, Di Febbraro M, Cristinzio G, Zoina A, Russo D. Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin Biol Invasions, 2016, 18(6): 1759-1768.
CrossRef Google scholar
Böttinger M, Kasang D (2021) Die SSP-Szenarien—Deutsch. Deutsches Klimarechenzentrum. (In German) https://www.dkrz.de/de/kommunikation/klimasimulationen/cmip6-de/die-ssp-szenarien
Brun P, Thuiller W, Chauvier Y, Pellissier L, Wüest RO, Wang ZH, Zimmermann NE. Model complexity affects species distribution projections under climate change J Biogeogr, 2020, 47(1): 130-142.
CrossRef Google scholar
Burke KL. Niche contraction of American chestnut in response to chestnut blight Can J for Res, 2012, 42(3): 614-620.
CrossRef Google scholar
Byers AK, Condron L, Donavan T, O’Callaghan M, Patuawa T, Waipara N, Black A. Soil microbial diversity in adjacent forest systems—contrasting native, old growth kauri (Agathis australis) forest with exotic pine (Pinus radiata) plantation forest FEMS Microbiol Ecol, 2020, 96(5): fiaa047.
CrossRef Google scholar
Chamberlain S, Barve V, Mcglinn D, Oldoni D, Desmet P, Geffert L, Ram K (2022) rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.7.9. Retrieved from https://github.com/ropensci/rgbif
Clark SL, Marcolin E, Patrício MS, Loewe-Muñoz V. A silvicultural synthesis of sweet (Castanea sativa) and American (C. Dentata) chestnuts For Ecol Manag, 2023, 539: 121041.
CrossRef Google scholar
Conedera M, Krebs P, Tinner W, Pradella M, Torriani D. The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale Veg Hist Archaeobot, 2004, 13(3): 161-179.
CrossRef Google scholar
Conedera M, Colombaroli D, Tinner W, Krebs P, Whitlock C. Insights about past forest dynamics as a tool for present and future forest management in Switzerland For Ecol Manag, 2017, 388: 100-112.
CrossRef Google scholar
Conedera M, Krebs P, Gehring E, Wunder J, Hülsmann L, Abegg M, Maringer J. How future-proof is Sweet chestnut (Castanea sativa) in a global change context? For Ecol Manag, 2021, 494. 119320
CrossRef Google scholar
Crandall BS, Gravatt GF, Ryan M. Root disease of Castanea species and some coniferous and broadleaf nursery stocks, caused by Phytophthora cinnamomi Phytopathology, 1945, 35: 162-180
Desprez-Loustau ML, Robin C, Buée M, Courtecuisse R, Garbaye J, Suffert F, Sache I, Rizzo DM. The fungal dimension of biological invasions Trends Ecol Evol, 2007, 22(9): 472-480.
CrossRef Google scholar
Dimitrakopoulos AP, Papaioannou KK. Flammability assessment of Mediterranean forest fuels Fire Technol, 2001, 37(2): 143-152.
CrossRef Google scholar
Dyderski MK, Paź S, Frelich LE, Jagodziński AM. How much does climate change threaten European forest tree species distributions? Glob Chang Biol, 2018, 24(3): 1150-1163.
CrossRef Google scholar
Ehrenfeld JG. Ecosystem consequences of biological invasions Annu Rev Ecol Evol Syst, 2010, 41: 59-80.
CrossRef Google scholar
El-Gabbas A, Dormann CF. Improved species-occurrence predictions in data-poor regions: using large-scale data and bias correction with down-weighted Poisson regression and maxent Ecography, 2018, 41(7): 1161-1172.
CrossRef Google scholar
Fantle-Lepczyk JE, Haubrock PJ, Kramer AM, Cuthbert RN, Turbelin AJ, Crystal-Ornelas R, Diagne C, Courchamp F. Economic costs of biological invasions in the United States Sci Total Environ, 2022, 806(Pt 3. 151318
CrossRef Google scholar
Fois M, Cuena-Lombraña A, Fenu G, Bacchetta G. Using species distribution models at local scale to guide the search of poorly known species: review, methodological issues and future directions Ecol Model, 2018, 385: 124-132.
CrossRef Google scholar
Franić I, Cleary M, Aday Kaya AG, Bragança H, Brodal G, Cech TL, Chandelier A, Doğmuş-Lehtijärvi T, Eschen R, Lehtijärvi A, Ormsby M, Prospero S, Schwanda K, Sikora K, Szmidla H, Talgø V, Tkaczyk M, Vettraino AM, Perez-Sierra A. The biosecurity risks of international forest tree seed movements Curr for Rep, 2024, 10 2): 89-102.
CrossRef Google scholar
Gibbs JN. Intercontinental epidemiology of Dutch elm disease Annu Rev Phytopathol, 1978, 16: 287-307.
CrossRef Google scholar
Gustafson EJ, Miranda BR, Dreaden TJ, Pinchot CC, Jacobs DF. Beyond blight: Phytophthora root rot under climate change limits populations of reintroduced American chestnut Ecosphere, 2022, 13(2. e3917
CrossRef Google scholar
Heller G, Seshan VE, Moskowitz CS, Gönen M. Inference for the difference in the area under the ROC curve derived from nested binary regression models Biostatistics, 2017, 18 2): 260-274.
CrossRef Google scholar
Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan R, Holm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, Rosnay P, Rozum I, Vamborg F, Villaume S, Thepaut J. The ERA5 global reanalysis Q J R Meteor Soc, 2020, 146: 1999-2049.
CrossRef Google scholar
Hijmans RJ, Phillips S, Leathwick J, Elith J (2015) Dismo: Species Distribution Modeling. R Package Version 1.0–12. http://CRAN.R-project.org/package=dismo
Hosni EM, Nasser MG, Al-Ashaal SA, Rady MH, Kenawy MA. Modeling current and future global distribution of Chrysomya bezziana under changing climate Sci Rep, 2020, 10(1): 4947.
CrossRef Google scholar
Hulme PE, Pysek P, Nentwig W, Vilà M. Ecology. Will threat of biological invasions unite the European Union? Science, 2009, 324(5923): 40-41.
CrossRef Google scholar
Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M. Climatologies at high resolution for the earth’s land surface areas Sci Data, 2017, 4. 170122
CrossRef Google scholar
Kjær ED, Lobo A, Myking T. The role of exotic tree species in Nordic forestry Scand J for Res, 2014, 29(4): 323-332.
CrossRef Google scholar
Li YC, Li MY, Li C, Liu ZZ. Optimized maxent model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China Forests, 2020, 11(3): 302.
CrossRef Google scholar
Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO. Live plant imports: the major pathway for forest insect and pathogen invasions of the US Frontiers Ecol Environ, 2012, 10(3): 135-143.
CrossRef Google scholar
Liebhold AM, Brockerhoff EG, Nuñez MA. Biological invasions in forest ecosystems: a global problem requiring international and multidisciplinary integration Biol Invasions, 2017, 19(11): 3073-3077.
CrossRef Google scholar
Liu CR, Berry PM, Dawson TP, Pearson RG. Selecting thresholds of occurrence in the prediction of species distributions Ecography, 2005, 28(3): 385-393.
CrossRef Google scholar
Loo JA Langor DW, Sweeney J. Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biol Invasions 11: 81–96 Ecological Impacts of Non-Native Invertebrates and Fungi on Terrestrial Ecosystems, 2009 Berlin Springer 157.
CrossRef Google scholar
Low BW, Zeng YW, Tan HH, Yeo DCJ. Predictor complexity and feature selection affect maxent model transferability: evidence from global freshwater invasive species Divers Distrib, 2021, 27(3): 497-511.
CrossRef Google scholar
Lyam PT, Duque-Lazo J, Durka W, Hauenschild F, Schnitzler J, Michalak I, Ogundipe OT, Muellner-Riehl AN. Genetic diversity and distribution of Senegalia senegal (L.) Britton under climate change scenarios in West Africa PLoS ONE, 2018, 13(4): e0194726.
CrossRef Google scholar
Manzoor SA, Griffiths G, Lukac M. Species distribution model transferability and model grain size—finer may not always be better Sci Rep, 2018, 8(1): 7168.
CrossRef Google scholar
Marzocchi G, Maresi G, Luchi N, Pecori F, Gionni A, Longa CMO, Pezzi G, Ferretti F. 85 years counteracting an invasion: chestnut ecosystems and landscapes survival against ink disease Biol Invasions, 2024, 26(7): 2049-2062.
CrossRef Google scholar
MeteoSwiss (2019) Maps of extreme precipitation. https://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/extreme-value-analyses/maps-of-extreme-precipitation.html
Noce S, Cipriano C, Santini M. Altitudinal shifting of major forest tree species in Italian mountains under climate change Front for Glob Change, 2023, 6: 1250651.
CrossRef Google scholar
O’Neill B, Tebaldi C, Vuuren D, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque J, Lowe J, Meehl G, Moss R, Riahi K, Sanderson B. The scenario model intercomparison project (ScenarioMIP) for CMIP6 Geosci Model Dev, 2016, 9: 3461-3482.
CrossRef Google scholar
Paillet FL. Chestnut: history and ecology of a transformed species J Biogeogr, 2002, 29(10–11): 1517-1530.
CrossRef Google scholar
Peterken GF. Ecological effects of introduced tree species in Britain For Ecol Manag, 2001, 141(1–2): 31-42.
CrossRef Google scholar
Peters FS, Wunderlich L, Metzler B. First report of Phytophthora cinnamomi in forest stands in Germany For Pathol, 2019, 49(2. e12485
CrossRef Google scholar
Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions Ecol Model, 2006, 190 3–4): 231-259.
CrossRef Google scholar
Poggio L, de Sousa LM, Batjes NH, Heuvelink GBM, Kempen B, Ribeiro E, Rossiter D. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty Soil, 2021, 7(1): 217-240.
CrossRef Google scholar
Prospero S, Heinz M, Augustiny E, Chen YY, Engelbrecht J, Fonti M, Hoste A, Ruffner B, Sigrist R, van den Berg N, Fonti P. Distribution, causal agents, and infection dynamic of emerging ink disease of sweet chestnut in Southern Switzerland Environ Microbiol, 2023, 25(11): 2250-2265.
CrossRef Google scholar
R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Website https://www.r-project.org
Robin C, Marchand M Asiegbu FO, Kovalchuk A. Diseases of chestnut trees Forest Microbiology, Volume Two: Forest Tree Health, 2022 All Elsevier Inc. 311-323.
CrossRef Google scholar
Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E, Vilà M. Impacts of biological invasions: what’s what and the way forward Trends Ecol Evol, 2013, 28(1): 58-66.
CrossRef Google scholar
Thurm EA, Hernandez L, Baltensweiler A, Ayan S, Rasztovits E, Bielak K, Zlatanov TM, Hladnik D, Balic B, Freudenschuss A, Büchsenmeister R, Falk W. Alternative tree species under climate warming in managed European forests For Ecol Manag, 2018, 430: 485-497.
CrossRef Google scholar
Tinner W, Hubschmid P, Wehrli M, Ammann B, Conedera M. Long-term forest fire ecology and dynamics in southern Switzerland J Ecol, 1999, 87: 273-289.
CrossRef Google scholar
Turchetti T, Maresi G. Management of diseases in chestnut orchards and stands: a significant prospect Adv Hortic Sci, 2006, 20: 33-39
Vacek Z, Vacek S, Cukor J. European forests under global climate change: review of tree growth processes, crises and management strategies J Environ Manage, 2023, 332. 117353
CrossRef Google scholar
Vannini A, Vettraino A, Lellis SCD. Ink disease in chestnuts: impact on the European chestnut For Snow Landsc Res, 2001, 76(3): 345-350
Vettraino AM, Natili G, Anselmi N, Vannini A. Recovery and pathogenicity of Phytophthora species associated with a resurgence of ink disease in Castanea sativa in Italy Plant Pathol, 2001, 50(1): 90-96.
CrossRef Google scholar
Vítková M, Müllerová J, Sádlo J, Pergl J, Pyšek P. Black locust (Robinia pseudoacacia) beloved and despised: a story of an invasive tree in central Europe For Ecol Manage, 2017, 384: 287-302.
CrossRef Google scholar
Vitousek PM, D'Antonio CM, Loope LL, Westbrooks R. Biological invasions as global environmental change Am Sci, 1996, 84: 468-478
Wingfield MJ, Slippers B, Roux J, Wingfield BD. Worldwide movement of exotic forest fungi, especially in the tropics and the southern hemisphere Bioscience, 2001, 51(2): 134.
CrossRef Google scholar
Wingfield MJ, Slippers B, Wingfield BD, Barnes I. The unified framework for biological invasions: a forest fungal pathogenperspective Biol Invasions, 2017, 19(11): 3201-3214.
CrossRef Google scholar
Wüest RO, Bergamini A, Bollmann K, Brändli UB, Baltensweiler A. Modellierte Verbreitungskarten für die häufigsten Gehölzarten der Schweiz Schweiz Z fur Forstwesen, 2021, 172(4): 226-233. in German)
CrossRef Google scholar
Yackulic CB, Chandler R, Zipkin EF, Royle JA, Nichols JD, Campbell Grant EH, Veran S. Presence-only modelling using MAXENT: When can we trust the inferences? Methods Ecol Evol, 2013, 4(3): 236-243.
CrossRef Google scholar
Zentmyer GA. The effect of temperature on growth and pathogenesis of Phytophthora cinnamomiand on growth of its avocado host Phytopathology, 1981, 71(9): 925.
CrossRef Google scholar
Zhang Y, Tang JS, Ren G, Zhao KX, Wang XF. Global potential distribution prediction of Xanthium italicum based on Maxent model Sci Rep, 2021, 11(1): 16545.
CrossRef Google scholar
Funding
WSL - Swiss Federal Institute for Forest, Snow and Landscape Research

Accesses

Citations

Detail

Sections
Recommended

/