Distinct responses of climate-growth and iWUE in Fagus sylvatica L. at two low elevation sites in southern Italy

Jerzy Piotr Kabala , Francesco Niccoli , Simona Altieri , Iqra Liyaqat , Giovanna Battipaglia

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 2

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) :2 DOI: 10.1007/s11676-024-01788-6
Original Paper
research-article

Distinct responses of climate-growth and iWUE in Fagus sylvatica L. at two low elevation sites in southern Italy

Author information +
History +
PDF

Abstract

In this study, using a dendrological and isotopic approaches, we investigated the responses to climate of two pure Fagus sylvatica L. stands (Campobraca and Falode) in the southernmost part of the distribution range in southern Italy. The δ13C data were used for calculating the intrinsic water use efficiency (iWUE) as a proxy of the balance between the water and carbon cycles. The results showed that the iWUE of both stands was sensitive to the amount of precipitation during the summer months (negative, significant effect) and to atmospheric CO2 concentration. Growth was sensitive to climate only in the Campo Braca site; the most influential variables were the VPD (vapour pressure deficit) and precipitation of the summer months that had a negative and a positive effect, respectively. The iWUE showed a negative correlation with growth in Campo Braca and a non-significant one in Falode. Water availability was the most influential variable on F. sylvatica growth and physiology. The iWUE increase was mainly driven by atmospheric CO2 concentration, and by decreased precipitation, as a response of the trees to drought. Our results highlight the importance of understanding the hydrological changes due to climate change for forecasting/modelling forest responses. CO2 increase does not compensate for the effect of adverse climate on F. sylvatica in the forests of southern Italy, while local conditions play an important role in determining tree growth.

Keywords

Intrinsic water use efficiency / Tree rings / Stable isotope analysis / Climate change / European beech

Cite this article

Download citation ▾
Jerzy Piotr Kabala, Francesco Niccoli, Simona Altieri, Iqra Liyaqat, Giovanna Battipaglia. Distinct responses of climate-growth and iWUE in Fagus sylvatica L. at two low elevation sites in southern Italy. Journal of Forestry Research, 2025, 36(1): 2 DOI:10.1007/s11676-024-01788-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen KJ, Fenwick P, Palmer JG, Nichols SC, Cook ER, Buckley BM, Baker PJ. A 1700-year Athrotaxis selaginoides tree-ring width chronology from southeastern Australia. Dendrochronologia, 2017, 45: 90-100

[2]

Altieri S, Niccoli F, Kabala JP, Liyaqat I, Battipaglia G. Influence of drought and minimum temperature on tree growth and water use efficiency of Mediterranean species. Dendrochronologia, 2024, 83 126162

[3]

Anderson GB, Bell ML, Peng RD. Methods to calculate the heat index as an exposure metric in environmental health research. Environ Health Perspect, 2013, 121(10): 1111-1119

[4]

Aranda I, Cano FJ, Gascó A, Cochard H, Nardini A, Mancha JA, López R, Sánchez-Gómez D. Variation in photosynthetic performance and hydraulic architecture across European beech (Fagus sylvatica L.) populations supports the case for local adaptation to water stress. Tree Physiol, 2015

[5]

Arco Molina JG, Helle G, Hadad MA, Roig FA. Variations in the intrinsic water-use efficiency of north Patagonian forests under a present climate change scenario: tree age, site conditions and long-term environmental effects. Tree Physiol, 2019, 39(4): 661-678

[6]

Arnold TW. Uninformative parameters and model selection using akaike’s information criterion. J Wildl Manag, 2010, 74(6): 1175-1178

[7]

Attorre F, Alfò M, De Sanctis M, Francesconi F, Valenti R, Vitale M, Bruno F. Evaluating the effects of climate change on tree species abundance and distribution in the Italian peninsula. Appl Veg Sci, 2011, 14(2): 242-255

[8]

Aucelli PPC, Cesarano M, Di Paola G, Filocamo F, Rosskopf CM. Geomorphological map of the central sector of the Matese Mountains (Southern Italy): an example of complex landscape evolution in a Mediterranean mountain environment. J Maps, 2013, 9(4): 604-616

[9]

Avanzi F, Gabellani S, Delogu F, Silvestro F, Pignone F, Bruno G, Pulvirenti L, Squicciarino G, Fiori E, Rossi L, Puca S, Toniazzo A, Giordano P, Falzacappa M, Ratto S, Stevenin H, Cardillo A, Fioletti M, Cazzuli O, Cremonese E, Morra di Cella U, Ferraris L. IT-SNOW: a snow reanalysis for Italy blending modeling, in situ data, and satellite observations (2010–2021). Earth Syst Sci Data, 2023, 15(2): 639-660

[10]

Battipaglia G, Cherubini P, Saurer M, Siegwolf RTW, Strumia S, Francesca Cotrufo M. Volcanic explosive eruptions of the Vesuvio decrease tree-ring growth but not photosynthetic rates in the surrounding forests. Glob Change Biol, 2007, 13(6): 1122-1137

[11]

Battipaglia G, Jäggi M, Saurer M, Siegwolf RTW, Cotrufo MF. Climatic sensitivity of δ18 O in the wood and cellulose of tree rings: Results from a mixed stand of Acer pseudoplatanus L. and Fagus sylvatica L.. Palaeogeogr Palaeoclimatol Palaeoecol, 2008

[12]

Battipaglia G, de Micco V, Brand WA, Saurer M, Aronne G, Linke P, Cherubini P. Drought impact on water use efficiency and intra-annual density fluctuations in Erica arborea on Elba (Italy). Plant Cell Environ, 2014, 37(2): 382-391

[13]

Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Riahi K (2008) Intergovernmental Panel on Climate Change (IPCC) 2007. Climate change 2007: Synthesis report.

[14]

Bert D, Lebourgeois F, Ouayjan A, Ducousso A, Ogée J, Hampe A. Past and future radial growth and water-use efficiency of Fagus sylvatica and Quercus robur in a long-term climate refugium. Dendrochronologia, 2022, 72 125939

[15]

Braun S, Hopf SE, Tresch S, Remund J, Schindler C. 37 years of forest monitoring in Switzerland: drought effects on Fagus sylvatica. Front for Glob Change, 2021, 4 765782

[16]

Bunn AG. A dendrochronology program library in R (dplR). Dendrochronologia, 2008, 26(2): 115-124

[17]

Bunn A, Korpela M, Biondi F, Campelo F, Mérian P, Qeadan F, Zang C (2016) dplR: dendrochronology program library in R. R package version 1.6.4. https://CRAN.R-project.org/package=dplR

[18]

Camarero JJ, Colangelo M, Gazol A, Azorín-Molina C. Drought and cold spells trigger dieback of temperate oak and beech forests in northern Spain. Dendrochronologia, 2021, 66 125812

[19]

Caudullo G, Welk E, San-Miguel-Ayanz J. Chorological maps for the main European woody species. Data Brief, 2017, 12: 662-666

[20]

Cavin L, Jump AS. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Glob Chang Biol, 2017

[21]

Cherubini P, Battipaglia G, Innes JL. Tree vitality and forest health: can tree-ring stable isotopes be used as indicators?. Curr for Rep, 2021, 7(2): 69-80

[22]

Cocozza C, de Miguel M, Pšidová E, Ditmarová L, Marino S, Maiuro L, Alvino A, Czajkowski T, Bolte A, Tognetti R. Variation in ecophysiological traits and drought tolerance of beech (Fagus sylvatica L.) seedlings from different populations. Front Plant Sci, 2016

[23]

Conte E, Lombardi F, Battipaglia G, Palombo C, Altieri S, Porta NL, Marchetti M, Tognetti R. Growth dynamics, climate sensitivity and water use efficiency in pure vs. mixed pine and beech stands in Trentino (Italy). For Ecol Manag, 2018, 409: 707-718

[24]

Cooper AE, Kirchner JW, Wolf S, Lombardozzi DL, Sullivan BW, Tyler SW, Harpold AA. Snowmelt causes different limitations on transpiration in a Sierra Nevada conifer forest. Agric for Meteor, 2020, 291 108089

[25]

Dallal GE, Wilkinson L. An analytic approximation to the distribution of Lilliefors’s test statistic for normality. Am Stat, 1986, 40(4): 294-296

[26]

del Río S, Canas R, Cano E, Cano-Ortiz A, Musarella C, Pinto-Gomes C, Penas A. Modelling the impacts of climate change on habitat suitability and vulnerability in deciduous forests in Spain. Ecol Indic, 2021, 131 108202

[27]

Di Filippo A, Alessandrini A, Biondi F, Blasi S, Portoghesi L, Piovesan G. Climate change and oak growth decline: Dendroecology and stand productivity of a Turkey oak (Quercus cerris L.) old stored coppice in Central Italy. Ann For Sci, 2010

[28]

Di Traglia M, Attorre F, Francesconi F, Valenti R, Vitale M. Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios?. A Methodological Approach Ecol Model, 2011, 222(4): 925-934

[29]

Dolar , del Castillo EM, Serrano-Notivoli R, de Luis AM, Novak K, Merela M, Čufar K. Spatial and temporal variation of Fagus sylvatica growth in marginal areas under progressive climate change. Dendrochronologia, 2023, 81 126135

[30]

Dolschak K, Gartner K, Berger TW. The impact of rising temperatures on water balance and phenology of European beech (Fagus sylvatica L.) stands. Model Earth Syst Environ, 2019

[31]

Dounavi A, Netzer F, Celepirovic N, Ivanković M, Burger J, Figueroa AG, Schön S, Simon J, Cremer E, Fussi B, Konnert M, Rennenberg H. Genetic and physiological differences of European beech provenances (F. sylvatica L.) exposed to drought stress. For Ecol Manag, 2016, 361: 226-236

[32]

Duquesnay A, Breda N, Stiévenard M, Dupouey J. Changes of tree-ring δ13 C and water-use efficiency of beech (Fagus sylvatica L.) in north-eastern France during the past century. Plant Cell Environ, 1998, 21: 565-572

[33]

Durrant TH, De Rigo D, Caudullo G (2016) Fagus sylvatica in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp 94–95, e012b90

[34]

Ehleringer JR, Cerling TE. Atmospheric CO2 and the ratio of intercellular to ambient CO2 concentrations in plants. Tree Physiol, 1995, 15(2): 105-111

[35]

El Kohen A, Venet L, Mousseau M. Growth and photosynthesis of two deciduous forest species at elevated carbon dioxide. Funct Ecol, 1993, 7(4): 480

[36]

Esper J, Gärtner H. Interpretation of tree–ring chronologies. erdkunde, 2001

[37]

Esper J, Schneider L, Smerdon JE, Schöne BR, Büntgen U. Signals and memory in tree-ring width and density data. Dendrochronologia, 2015, 35: 62-70

[38]

Fang KY, Gou XH, Peters K, Li JB, Zhang F. Removing biological trends from tree-ring series: testing modified hugershoff curves. Tree Ring Res, 2010, 66(151-59

[39]

Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol, 1982, 33: 317-345

[40]

Forner A, Valladares F, Bonal D, Granier A, Grossiord C, Aranda I. Extreme droughts affecting Mediterranean tree species’ growth and water-use efficiency: the importance of timing. Tree Physiol, 2018, 38(8): 1127-1137

[41]

Fu L, Xu Y, Xu ZH, Wu BF, Zhao D. Tree water-use efficiency and growth dynamics in response to climatic and environmental changes in a temperate forest in Beijing. China Environ Int, 2020, 134 105209

[42]

Gillner S, Rüger N, Roloff A, Berger U. Low relative growth rates predict future mortality of common beech (Fagus sylvatica L.). For Ecol Manag, 2013, 302: 372-378

[43]

Gillner S, Bräuning A, Roloff A. Dendrochronological analysis of urban trees: climatic response and impact of drought on frequently used tree species. Trees, 2014, 28(4): 1079-1093

[44]

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ, 2017, 202: 18-27

[45]

Gouhier TC, Grinsted A, Simko V (2021) R package biwavelet: conduct univariate and bivariate wavelet analyses. https://CRAN.R-project.org/package=biwavelet

[46]

Guo G, Fang K, Li J, Linderholm HW, Li D, Zhou F, Dong Z, Li Y, Wang L. Increasing intrinsic water-use efficiency over the past 160 years does not stimulate tree growth in Southeastern China. Clim Res, 2018, 76(2): 115-130

[47]

Hacket-Pain AJ, Friend AD. Increased growth and reduced summer drought limitation at the southern limit of Fagus sylvatica L., despite regionally warmer and drier conditions. Dendrochronologia, 2017, 44: 22-30

[48]

Harrell FEJ (2023) Hmisc: Harrell Miscellaneous. https://doi.org/10.32614/CRAN.package.Hmisc

[49]

Harter DEV, Nagy L, Backhaus S, Beierkuhnlein C, Fussi B, Huber G, Jentsch A, Konnert M, Thiel D, Kreyling J. A comparison of genetic diversity and phenotypic plasticity among European beech (Fagus sylvatica L.) populations from Bulgaria and Germany under drought and temperature manipulation. Int J Plant Sci, 2015

[50]

Hartl C, Düthorn E, Tejedor E, Kirchhefer AJ, Timonen M, Holzkämper S, Büntgen U, Esper J. Micro-site conditions affect Fennoscandian forest growth. Dendrochronologia, 2021, 65 125787

[51]

Hemming DL, Switsur VR, Waterhouse JS, Heaton THE, Carter AHC. Climate variation and the stable carbon isotope composition of tree ringcellulose: an intercomparison of Quercus robur, Fagus sylvatica and Pinussilvestris. Tellus B Chem Phys Meteor, 1998, 50(1): 25

[52]

Hentschel R, Hommel R, Poschenrieder W, Grote R, Holst J, Biernath C, Gessler A, Priesack E. Stomatal conductance and intrinsic water use efficiency in the drought year 2003: a case study of European beech. Trees, 2016, 30(1153-174

[53]

Houdas H, Olano JM, Hernández-Alonso H, Gómez C, García-Hidalgo M, Domingo D, Delgado-Huertas A, Sangüesa-Barreda G. Pine processionary moth outbreaks and droughts have different tree ring signatures in Mediterranean pines. Dendrochronologia, 2024, 85 126197

[54]

Housset JM, Tóth EG, Girardin MP, Tremblay F, Motta R, Bergeron Y, Carcaillet C. Tree-rings, genetics and the environment: Complex interactions at the rear edge of species distribution range. Dendrochronologia, 2021, 69 125863

[55]

Hugershoff R. Die mathematischen Hilfsmittel der Kulturingenieurs und Biologen, 1936, Berlin, Springer

[56]

Jump AS, Hunt JM, Peñuelas J. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Change Biol, 2006, 12(11): 2163-2174

[57]

Jung T. Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. For Pathol, 2009, 39(2): 73-94

[58]

Kabala JP, Niccoli F, Battipaglia G (2022) A customizable and use friendly R package to process big data from the Tree Talker system. In: In: 2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor). Perugia, Italy. IEEE: 70–74.

[59]

Kermavnar J, Levanič T, Kutnar L. Stable isotope composition in tree rings of Fagus sylvatica L. saplings reflects environmental variation induced by silviculture and microsite factors. For Ecol Manag, 2023

[60]

King GM, Gugerli F, Fonti P, Frank DC. Tree growth response along an elevational gradient: climate or genetics?. Oecologia, 2013, 173(4): 1587-1600

[61]

Klesse S, Wohlgemuth T, Meusburger K, Vitasse Y, von Arx G, Lévesque M, Neycken A, Braun S, Dubach V, Gessler A, Ginzler C, Gossner MM, Hagedorn F, Queloz V, Samblás Vives E, Rigling A, Frei ER. Long-term soil water limitation and previous tree vigor drive local variability of drought-induced crown dieback in Fagus sylvatica. Sci Total Environ, 2022, 851 157926

[62]

Lebourgeois F, Bréda N, Ulrich E, Granier A. Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French permanent plot network (RENECOFOR). Trees, 2005, 19(4): 385-401

[63]

Leonelli G, Coppola A, Salvatore MC, Baroni C, Battipaglia G, Gentilesca T, Ripullone F, Borghetti M, Conte E, Tognetti R, Marchetti M, Lombardi F, Brunetti M, Maugeri M, Pelfini M, Cherubini P, Provenzale A, Maggi V. Climate signals in a multispecies tree-ring network from central and southern Italy and reconstruction of the late summer temperatures since the early 1700s. Clim past, 2017, 13(11): 1451-1471

[64]

Leuschner C. Drought response of European beech (Fagus sylvatica L.)—a review. Perspect Plant Ecol Evol Syst, 2020

[65]

Li YJ, Dong ZP, Chen DL, Zhao SY, Zhou FF, Cao XG, Fang KY. Growth decline of Pinus Massoniana in response to warming induced drought and increasing intrinsic water use efficiency in humid subtropical China. Dendrochronologia, 2019, 57 125609

[66]

Linares JC, Delgado-Huertas A, Julio Camarero J, Merino J, Carreira JA. Competition and drought limit the response of water-use efficiency to rising atmospheric carbon dioxide in the Mediterranean fir Abies pinsapo. Oecologia, 2009, 161(3): 611-624

[67]

Lotfiomran N, Fromm J, Luinstra GA. Effects of elevated CO2 and different nutrient supplies on wood structure of European beech (Fagus sylvatica) and gray poplar (Populus × canescens). IAWA J, 2015, 36(1): 84-97

[68]

Lu WW, Yu XX, Jia GD, Li HZ, Liu ZQ. Responses of intrinsic water-use efficiency and tree growth to climate change in semi-arid areas of North China. Sci Rep, 2018, 8(1): 308

[69]

Marchand W, Girardin MP, Hartmann H, Depardieu C, Isabel N, Gauthier S, Boucher É, Bergeron Y. Strong overestimation of water-use efficiency responses to rising CO2 in tree-ring studies. Glob Chang Biol, 2020, 26(84538-4558

[70]

Martinez del Castillo E, Zang CS, Buras A, Hacket-Pain A, Esper J, Serrano-Notivoli R, Hartl C, Weigel R, Klesse S, Resco de Dios V, Scharnweber T, Dorado-Liñán I, van der Maaten-Theunissen M, van der Maaten E, Jump A, Mikac S, Banzragch BE, Beck W, Cavin L, Claessens H, Čada V, Čufar K, Dulamsuren C, Gričar J, Gil-Pelegrín E, Janda P, Kazimirovic M, Kreyling J, Latte N, Leuschner C, Longares LA, Menzel A, Merela M, Motta R, Muffler L, Nola P, Petritan AM, Petritan IC, Prislan P, Rubio-Cuadrado Á, Rydval M, Stajić B, Svoboda M, Toromani E, Trotsiuk V, Wilmking M, Zlatanov T, de Luis M. Climate-change-driven growth decline of European beech forests. Commun Biol, 2022, 5: 163

[71]

Mathias JM, Thomas RB. Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO2 and modulated by climate and plant functional types. Proc Natl Acad Sci USA, 2021, 118(7 e2014286118

[72]

Mazza G, Monteverdi MC, Altieri S, Battipaglia G. Climate-driven growth dynamics and trend reversal of Fagus sylvatica L. and Quercus cerris L. in a low-elevation beech forest in Central Italy. Sci Total Environ, 2024

[73]

Meko DM, Touchan R, Anchukaitis KJ. Seascorr: a MATLAB program for identifying the seasonal climate signal in an annual tree-ring time series. Comput Geosci, 2011, 37(9): 1234-1241

[74]

Michelot A, Bréda N, Damesin C, Dufrêne E. Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. For Ecol Manag, 2012, 265: 161-171

[75]

Muñoz-Sabater J, Dutra E, Agustí-Panareda A, Albergel C, Arduini G, Balsamo G, Boussetta S, Choulga M, Harrigan S, Hersbach H, Martens B, Miralles DG, Piles M, Rodríguez-Fernández NJ, Zsoter E, Buontempo C, Thépaut JN. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst Sci Data, 2021, 13(94349-4383

[76]

Nehemy MF, Maillet J, Perron N, Pappas C, Sonnentag O, Baltzer JL, Laroque CP, McDonnell JJ. Snowmelt water use at transpiration onset: phenology, isotope tracing, and tree water transit time. Water Resour Res, 2022

[77]

Niccoli F, Danise T, Innangi M, Pelleri F, Manetti MC, Mastrolonardo G, Certini G, Fioretto A, Battipaglia G. Tree species composition in mixed plantations influences plant growth, intrinsic water use efficiency and soil carbon stock. Forests, 2021, 12(9): 1251

[78]

Niccoli F, Altieri S, Kabala JP, Battipaglia G. Fire affects tree growth, water use efficiency and carbon sequestration ecosystem service of Pinus nigra Arnold: a combined satellite and ground-based study in central Italy. Forests, 2023, 14(102033

[79]

Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC.

[80]

Pavlović L, Stojanović D, Mladenović E, Lakićević M, Orlović S. Potential elevation shift of the European beech stands (Fagus sylvatica L.) in Serbia. Front Plant Sci, 2019

[81]

Peng JF, Peng KY, Li JB. Climate-growth response of Chinese white pine (Pinus armandii) at different age groups in the Baiyunshan National Nature Reserve, Central China. Dendrochronologia, 2018, 49: 102-109

[82]

Peñuelas J, Hunt JM, Ogaya R, Jump AS. Twentieth century changes of tree-ring δ13C at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Glob Change Biol, 2008, 14(51076-1088

[83]

Perez M, Lombardi D, Vitale M (2023) Wavelet coherence analysis to assess cross-correlation of Mediterranean vegetation and drought condition at local scale. In: In: 2023 IEEE International workshop on metrology for agriculture and forestry (MetroAgriFor). Pisa, Italy. IEEE: 679–684.

[84]

Piovesan G, Biondi F, Di Filippo A, Alessandrini A, Maugeri M. Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines Italy. Glob Change Biol, 2008

[85]

Portet S. A primer on model selection using the Akaike information criterion. Infect Dis Model, 2020, 5: 111-128

[86]

Pretzsch H, del Río M, Arcangeli C, Bielak K, Dudzinska M, Forrester DI, Klädtke J, Kohnle U, Ledermann T, Matthews R, Nagel J, Nagel R, Ningre F, Nord-Larsen T, Biber P. Forest growth in Europe shows diverging large regional trends. Sci Rep, 2023, 13: 15373

[87]

Prislan P, Gričar J, Čufar K, de Luis M, Merela M, Rossi S. Growing season and radial growth predicted for Fagus sylvatica under climate change. Clim Change, 2019, 153(1): 181-197

[88]

Puchi PF, Dalmonech D, Vangi E, Battipaglia G, Tognetti R, Collalti A. Contrasting patterns of water use efficiency and annual radial growth among European beech forests along the Italian peninsula. Sci Rep, 2024, 14: 6526

[89]

Rahman M, Islam M, Gebrekirstos A, Bräuning A. Trends in tree growth and intrinsic water-use efficiency in the tropics under elevated CO2 and climate change. Trees, 2019, 33(3623-640

[90]

Rezaie N, D’Andrea E, Bräuning A, Matteucci G, Bombi P, Lauteri M. Do atmospheric CO2 concentration increase, climate and forest management affect iWUE of common beech? Evidences from carbon isotope analyses in tree rings. Tree Physiol, 2018, 38(81110-1126

[91]

Rose L, Leuschner C, Köckemann B, Buschmann H. Are marginal beech (Fagus sylvatica L.) provenances a source for drought tolerant ecotypes?. Eur J For Res, 2009

[92]

Sanginés de Cárcer P, Vitasse Y, Peñuelas J, Jassey VEJ, Buttler A, Signarbieux C. Vapor-pressure deficit and extreme climatic variables limit tree growth. Glob Chang Biol, 2018, 24(3): 1108-1122

[93]

Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder C, Wilmking M. Drought matters–Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. For Ecol Manag, 2011

[94]

Shestakova TA, Martínez-Sancho E. Stories hidden in tree rings: a review on the application of stable carbon isotopes to dendrosciences. Dendrochronologia, 2021, 65 125789

[95]

Stephens MA. EDF statistics for goodness of fit and some comparisons. J Am Stat Assoc, 1974, 69(347): 730-737

[96]

Tardif J, Camarero JJ, Ribas M, Gutiérrez E. Spatiotemporal variability in tree growth in the central Pyrenees: climatic and site influences. Ecol Monogr, 2003, 73(2): 241-257

[97]

Tegel W, Seim A, Hakelberg D, Hoffmann S, Panev M, Westphal T, Büntgen U. A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. Eur J For Res, 2014

[98]

Thiel D, Kreyling J, Backhaus S, Beierkuhnlein C, Buhk C, Egen K, Huber G, Konnert M, Nagy L, Jentsch A. Different reactions of central and marginal provenances of Fagus sylvatica to experimental drought. Eur J for Res, 2014, 133(2): 247-260

[99]

Tognetti R, Lombardi F, Lasserre B, Cherubini P, Marchetti M. Tree-ring stable isotopes reveal twentieth-century increases in water-use efficiency of Fagus sylvatica and Nothofagus spp. Italian Chilean Mountains Plos One, 2014, 9(11 e113136

[100]

Vaglio Laurin G, Cotrina-Sanchez A, Belelli-Marchesini L, Tomelleri E, Battipaglia G, Cocozza C, Niccoli F, Kabala JP, Gianelle D, Vescovo L, Da Ros L, Valentini R. Comparing ground below-canopy and satellite spectral data for an improved and integrated forest phenology monitoring system. Ecol Indic, 2024, 158 111328

[101]

Vitale M, Mancini M, Matteucci G, Francesconi F, Valenti R, Attorre F. Model-based assessment of ecological adaptations of three forest tree species growing in Italy and impact on carbon and water balance at national scale under current and future climate scenarios. Iforest, 2012, 5(1): 235-246

[102]

Vitali V, Klesse S, Weigt R, Treydte K, Frank D, Saurer M, Siegwolf RTW. High-frequency stable isotope signals in uneven-aged forests as proxy for physiological responses to climate in Central Europe. Tree Physiol, 2021, 41(11): 2046-2062

[103]

Voelker SL, Muzika RM, Guyette RP, Stambaugh MC. Historical CO2 growth enhancement declines with age in Quercus and Pinus. Ecol Monogr, 2006, 76(4): 549-564

[104]

Voelker SL, Brooks JR, Meinzer FC, Anderson R, Bader MK, Battipaglia G, Becklin KM, Beerling D, Bert D, Betancourt JL, Dawson TE, Domec JC, Guyette RP, Körner C, Leavitt SW, Linder S, Marshall JD, Mildner M, Ogée J, Panyushkina I, Plumpton HJ, Pregitzer KS, Saurer M, Smith AR, Siegwolf RT, Stambaugh MC, Talhelm AF, Tardif JC, Van de Water PK, Ward JK, Wingate L (2016) A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Glob Chang Biol 22(2): 889–902

[105]

Wei T, Simko V (2021) R package “corrplot”: Visualization of a Correlation Matrix. https://github.com/taiyun/corrplotvan

[106]

Weigel R, Muffler L, Klisz M, Kreyling J, van der Maaten-Theunissen M, Wilmking M, van der Maaten E. Winter matters: sensitivity to winter climate and cold events increases towards the cold distribution margin of European beech (Fagus sylvatica L.). J Biogeogr, 2018, 45(12): 2779-2790

[107]

Welsh C, Smith DJ, Coulthard B. Tree-ring records unveil long-term influence of the Pacific Decadal Oscillation on snowpack dynamics in the Stikine River basin, northern British Columbia. Hydrol Process, 2019, 33(5): 720-736

[108]

Wigley TML, Briffa KR, Jones PD. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Climate Appl Meteor, 1984, 23(2): 201-213

[109]

Wood SN. Thin plate regression splines. J R Stat Soc Ser B Stat Methodol, 2003, 65(1): 95-114

[110]

Wood SN. Generalized additive models: an introduction with R. Chapman and Hall/CRC, 2017

[111]

Wu GJ, Liu XH, Kang SC, Chen T, Xu GB, Zeng XM, Wang WZ, Wang B, Zhang XW, Kang HH. Age-dependent impacts of climate change and intrinsic water-use efficiency on the growth of Schrenk spruce (Picea schrenkiana) in the western Tianshan Mountains, China. For Ecol Manag, 2018, 414: 1-14

[112]

Xu GB, Liu XH, Belmecheri S, Chen T, Wu GJ, Wang B, Zeng XM, Wang WZ. Disentangling contributions of CO2 concentration and climate to changes in intrinsic water-use efficiency in the arid boreal forest in China’s Altay Mountains. Forests, 2018, 9(10642

[113]

Young-Robertson JM, Bolton WR, Bhatt US, Cristóbal J, Thoman R. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest. Sci Rep, 2016, 6: 29504

[114]

Zambrano-Bigiarini M (2020) hydroGOF: Goodness-of-Fit functions for comparison of simulated and observed hydrological time series. https://github.com/hzambran/hydroGOF

[115]

Zang C, Biondi F. Treeclim: an R package for the numerical calibration of proxy-climate relationships. Ecography, 2015, 38(4431-436

[116]

Zhu GF, Wang L, Liu YW, Bhat MA, Qiu DD, Zhao KL, Sang LY, Lin XR, Ye LL. Snow-melt water: an important water source for Picea crassifolia in Qilian Mountains. J Hydrol, 2022, 613 128441

Funding

Università degli Studi della Campania Luigi Vanvitelli

RIGHTS & PERMISSIONS

The Author(s)

PDF

78

Accesses

0

Citation

Detail

Sections
Recommended

/