Comparative study on the chloroplast genomes of five Larix species from the Qinghai-Tibet Plateau and the screening of candidate DNA markers

Qiqiang Guo , Huie Li , Zengqiang Qian , Jie Lu , Weilie Zheng

Journal of Forestry Research ›› 2021, Vol. 32 ›› Issue (5) : 2219 -2226.

PDF
Journal of Forestry Research ›› 2021, Vol. 32 ›› Issue (5) : 2219 -2226. DOI: 10.1007/s11676-020-01279-4
Original Paper

Comparative study on the chloroplast genomes of five Larix species from the Qinghai-Tibet Plateau and the screening of candidate DNA markers

Author information +
History +
PDF

Abstract

Five Larix species (L. griffithii, L. speciose, L. himalaica, L. kongboensis, and L. potaninii var. australis), have survived on the Qinghai-Tibet Plateau (QTP) under specific climate conditions for decades. The lack of genomic information seriously hinders research on the evolution, conservation and ecology of these Larix resources. In this study, complete chloroplast (cp) genomes of the 5 species were assembled and compared based on next generation sequencing technology combined with polymerase chain reaction validation. The results show that the 5 cp genomes are relatively conservative in size, gene content and arrangement, and border variation. Phylogenetic analysis showed that the species are closely related as well as to seven other species of the same genus. In addition, the 5 cp genomes contained few simple sequence repeats and relatively low nucleotide variability; thus, 12 candidate polymorphic cp DNA markers will be helpful for further research on relevant population genetics. These results will provide valuable genetic information for the conservation, evolution and ecology of these species and their relatives.

Keywords

Larix species / Plastid genome / Microsatellite / Phylogenetic analysis / Qinghai-tibet plateau

Cite this article

Download citation ▾
Qiqiang Guo, Huie Li, Zengqiang Qian, Jie Lu, Weilie Zheng. Comparative study on the chloroplast genomes of five Larix species from the Qinghai-Tibet Plateau and the screening of candidate DNA markers. Journal of Forestry Research, 2021, 32(5): 2219-2226 DOI:10.1007/s11676-020-01279-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform, 2014, 30(15): 2114-2120.

[2]

Bondar EI, Putintseva YA, Oreshkova NV, Krutovsky KV. Siberian larch (Larix sibirica Ledeb) chloroplast genome and development of polymorphic chloroplast markers. BMC Bioinform, 2019 20 1 38

[3]

Dong WP, Xu C, Li CH, Sun JH, Zuo YJ, Shi S, Cheng T, Guo JJ, Zhou SL. ycf1, the most promising plastid DNA barcode of land plants. Sci Rep, 2015, 5: 8348.

[4]

Fu L (1983) Flora of Tibet. China Science and Technology Press. Beijing. Pp. 373–377

[5]

Fu L, Li N, Mill RR (1999) Flora of China. Science Press and Missouri Botanical Garden Press. Beijing. pp. 11–52

[6]

Gao C, Deng Y, Wang J. The complete chloroplast genomes of Echinacanthus species (Acanthaceae): Phylogenetic relationships, adaptive evolution, and screening of molecular markers. Front Plant Sci, 2019, 9: 1989.

[7]

Gao XY, Zhang X, Meng HH, Li J, Zhang D, Liu CN. Comparative chloroplast genomes of Paris sect. Marmorata: insights into repeat regions and evolutionary implications. BMC Genom, 2018 19 10 878

[8]

Greiner S, Lehwark P, Bock R. Organellar genome DRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res, 2019, 47(W1): W59-W64.

[9]

Hahn C, Bachmann L, Chevreux B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads-a baiting and iterative mapping approach. Nucleic Acids Res, 2013 41 13 e129

[10]

Han K, Li J, Zeng S, Liu ZL. Complete chloroplast genome sequence of Chinese larch (Larix potaninii var. chinensis), an endangered conifer endemic to China. Conserv Genet Resour, 2017, 9(1): 111-113.

[11]

Hao Z, Cheng T, Zheng R, Xu H, Zhou Y, Li M, Lu F, Dong Y, Liu X, Chen J, Shi J. The complete chloroplast genome sequence of a relict conifer Glyptostrobus pensilis: Comparative analysis and insights into dynamics of chloroplast genome rearrangement in Cupressophytes and Pinaceae. PLoS ONE, 2016 11 8 e0161809

[12]

Healey A, Furtado A, Cooper T, Henry RJ. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods, 2014, 10: 21.

[13]

Ishizuka W, Tabata A, Ono K, Fukuda Y, Hara T. Draft chloroplast genome of Larix gmelinii var japonica: insight into intraspecific divergence. J For Res, 2017, 22(6): 393-398.

[14]

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinform, 2012, 28(12): 1647-1649.

[15]

Kim SC, Lee JW, Lee MW, Baek SH, Hong KN. The complete chloroplast genome sequences of Larix kaempferi and Larix olgensis var koreana (Pinaceae). Mitochondrial DNA Part B, 2018, 3(1): 36-37.

[16]

Kofler R, Schlotterer C, Lelley T. SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinform, 2007, 23(13): 1683-1685.

[17]

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Method, 2012 9 4 357

[18]

Lee SI, Nkongolo K, Park D, Choi IY, Choi AY, Kim NS. Characterization of chloroplast genomes of Alnus rubra and Betula cordifolia, and their use in phylogenetic analyses in Betulaceae. Genes Genom, 2019, 41(3): 305-316.

[19]

Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinform, 2009, 25(11): 1451-1452.

[20]

Lin CP, Huang JP, Wu CS, Hsu CY, Chaw SM. Comparative chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies. Genome Biol Evol, 2010, 2: 504-517.

[21]

Liu L, Wang Z, Huang LJ, Wang T, Su YJ. Chloroplast population genetics reveals low levels of genetic variation and conformation to the central-marginal hypothesis in Taxus wallichiana var mairei, an endangered conifer endemic to China. Ecol Evol, 2019, 9(20): 11944-11956.

[22]

Liu Y, Zheng W, Fu L. Flora of China, 1978, Beijing: China Science and Technology Press 168 196

[23]

Ni ZX, Zhou PY, Xu M, Xu LA. Development and characterization of chloroplast microsatellite markers for Pinus massoniana and their application in Pinus (Pinaceae) species. J Genet, 2018, 97(1): 53-59.

[24]

Parks M, Cronn R, Liston A. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol, 2009 7 1 84

[25]

Qiu DY, Yang J, Feng L, Ni DW, Huang CX, Li ZH. Complete plastid genome of Larix potaninii var macrocarpa, an endangered conifer endemic to China. Conserv Genet Resour, 2018, 10(2): 187-189.

[26]

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 2013, 30(12): 2725-2729.

[27]

Wang S, Yang CP, Zhao XY, Chen S, Qu GZ. Complete chloroplast genome sequence of Betula platyphylla: gene organization, RNA editing, and comparative and phylogenetic analyses. BMC Genom, 2018, 19: 950.

[28]

Worth JRP, Liu L, Wei F, Tomaru N. The complete chloroplast genome of Fagus crenata (subgenus Fagus) and comparison with F. engleriana (subgenus Engleriana). Peer J, 2019, 7: e7026.

[29]

Wu CS, Lin CP, Hsu CY, Wang RJ, Chaw SM. Comparative chloroplast genomes of pinaceae: insights into the mechanism of diversified genomic organizations. Genome Biol Evol, 2011, 3: 309-319.

[30]

Wyman SK, Jansen RK, Boore JL. Automatic annotation of organellar genomes with DOGMA. Bioinform, 2004, 20(17): 3252-3255.

[31]

Yang XM, Zhou TT, Su XY, Wang GB, Zhang XH, Guo QR, Cao FL. Structural characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms. J For Res, 2020

[32]

Zhou T, Ruhsam M, Wang J, Zhu HH, Li WL, Zhang X, Xu YC, Xu FS, Wang XM. The complete chloroplast genome of Euphrasia regelii, Pseudogenization of ndh genes and the phylogenetic relationships within Orobanchaceae. Front Genet, 2019, 10: 444.

[33]

Zimmermann HH, Harms L, Epp LS, Mewes N, Bernhardt N, Kruse S, Stoof-Leichsenring KR, Pestryakova LA, Wieczorek M, Trense D, Herzschuh U. Chloroplast and mitochondrial genetic variation of larches at the Siberian tundrataiga ecotone revealed by de novo assembly. PLoS ONE, 2019 14 7 0216966

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/