Qu-2, a robust poplar suspension cell line for molecular biology

Caixia Liu , Kailong Li , Meng Wang , Erqin Fan , Chuanping Yang , Junhui Wang , Pengyue Fu , Xiaolan Ge , Heike W. Sederoff , Ronald R. Sederoff , Vincent L. Chiang , Sui Wang , Guanzheng Qu

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (2) : 733 -740.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (2) : 733 -740. DOI: 10.1007/s11676-020-01266-9
Original Paper

Qu-2, a robust poplar suspension cell line for molecular biology

Author information +
History +
PDF

Abstract

Populus spp. have long been used as model woody plant species for molecular biology research. However, tissues of poplar are often recalcitrant to experimental procedures for molecular studies. We generated a hormone autotrophic poplar suspension cell line from a hybrid of Populus alba × P. berolinensis ‘Yinzhong’, named Qu-2. Qu-2 cells are suitable as a model biological system for studying woody plants. Qu-2 cells have many advantages over suspension cell lines derived so far from any other woody plants. Qu-2 cells are very easy to cultivate and can grow on several common plant culture media without the addition of any plant hormone. They show exceptionally high growth rates, reaching an approximately 150-fold increase in biomass after one week of culturing. Another important unique characteristic of Qu-2 cells is that they can be cryopreserved and readily reactivated. Qu-2 cells are suitable for molecular manipulations such as protoplast production, transient transformation, and RNA-seq analysis. Therefore, Qu-2 cells have the great potential to be an excellent model cell line in tree molecular biological research, ranging from physiology to gene function. The Qu-2 cells will be made available to the plant community for research.

Keywords

Qu-2 cell line / Suspension cell / Poplar / Protoplast isolation / Transient transformation

Cite this article

Download citation ▾
Caixia Liu, Kailong Li, Meng Wang, Erqin Fan, Chuanping Yang, Junhui Wang, Pengyue Fu, Xiaolan Ge, Heike W. Sederoff, Ronald R. Sederoff, Vincent L. Chiang, Sui Wang, Guanzheng Qu. Qu-2, a robust poplar suspension cell line for molecular biology. Journal of Forestry Research, 2020, 32(2): 733-740 DOI:10.1007/s11676-020-01266-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bae EK, Lee H, Lee JS, Noh EW, Choi YI, Lee BH, Choi DW. Microarray and suppression subtractive hybridization analyses of gene expression in hybrid poplar (Populus alba × Populus tremula var. glandulosa) cell suspension cultures after exposure to NaCl. Plant Physiol Biochem, 2012, 58: 151-158.

[2]

Banu MNA, Hoque MA, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, Shimoishi Y, Murata Y. Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. J Plant Physiol, 2009, 166(2): 146-156.

[3]

Beyrne CC, Gonzalez RM, Iusem ND. Strategy for the analysis of tissue-specific methylation changes without physical isolation. Epigenetics, 2019, 14(1): 41-51.

[4]

Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol, 2016, 34(5): 525-527.

[5]

Chen H, Wang JP, Liu H, Li H, Lin YJ, Shi R, Yang C, Gao J, Zhou C, Li Q, Sederoff RR, Li W, Chiang VL. Hierarchical transcription factor and chromatin binding network for wood formation in Populus trichocarpa. Plant Cell, 2019, 31(3): 602-626.

[6]

Delporte A, De Zaeytijd J, De Storme N, Azmi A, Geelen D, Smagghe G, Guisez Y, Van Damme EJ. Cell cycle-dependent O-GlcNAc modification of tobacco histones and their interaction with the tobacco lectin. Plant Physiol Biochem, 2014, 83: 151-158.

[7]

Gai YP, Ji XL, Lu W, Han XJ, Yang GD, Zheng CC. A novel late embryogenesis abundant like protein associated with chilling stress in Nicotiana tabacum cv. bright yellow-2 cell suspension culture. Mol Cell Proteomics, 2011, 10(11): 76-86.

[8]

Han JY, Wang HY, Choi YE. Production of dammarenediol-II triterpene in a cell suspension culture of transgenic tobacco. Plant Cell Rep, 2014, 33(2): 225-233.

[9]

Harashima H, Kato K, Shinmyo A, Sekine M. Auxin is required for the assembly of A-type cyclin-dependent kinase complexes in tobacco cell suspension culture. J Plant Physiol, 2007, 164(9): 1103-1112.

[10]

Issawi M, Muhieddine M, Girard C, Sol V, Riou C. Unexpected features of exponentially growing Tobacco Bright Yellow-2 cell suspension culture in relation to excreted extracellular polysaccharides and cell wall composition. Glycoconj J, 2017, 34(5): 585-590.

[11]

Jefferson RA, Burgess SM, Hirsh D. beta-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci U S A, 1986, 83(22): 8447-8451.

[12]

Krystofova O, Sochor J, Zitka O, Babula P, Kudrle V, Adam V, Kizek R. Effect of magnetic nanoparticles on tobacco BY-2 cell suspension culture. Int J Environ Res Public Health, 2013, 10(1): 47-71.

[13]

Lattanzio V, Caretto S, Linsalata V, Colella G, Mita G. Signal transduction in artichoke [Cynara cardunculus L. subsp. scolymus (L.) Hayek] callus and cell suspension cultures under nutritional stress. Plant Physiol Biochem, 2018, 127: 97-103.

[14]

Lin YC, Li W, Chen H, Li Q, Sun YH, Shi R, Lin CY, Wang JP, Chen HC, Chuang L, Qu GZ, Sederoff RR, Chiang VL. A simple improved-throughput xylem protoplast system for studying wood formation. Nat Protoc, 2014, 9(9): 2194-2205.

[15]

Ma Q, Bucking H, Hernandez JLG, Subramanian S. Single-cell RNA sequencing of plant-associated bacterial communities. Front Microbiol, 2019, 10: 2452.

[16]

Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant, 1962, 15(3): 473-497.

[17]

Nagata T, Nemoto Y, Hasezawa S. Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol, 1992, 132: 1-30.

[18]

Nagata T, Sakamoto K, Shimizu T. Tobacco by-2 cells: the present and beyond. Vitro Cell Dev Biol Plant, 2004, 40(2): 163-166.

[19]

Niczyj M, Champagne A, Alam I, Nader J, Boutry M. Expression of a constitutively activated plasma membrane H+-ATPase in Nicotiana tabacum BY-2 cells results in cell expansion. Planta, 2016, 244(5): 1109-1124.

[20]

Ohlsson AB, Djerbi S, Winzell A, Bessueille L, Ståldal V, Li X, Blomqvist K, Bulone V, Teeri TT, Berglund T. Cell suspension cultures of Populus tremula × P. tremuloides exhibit a high level of cellulose synthase gene expression that coincides with increased in vitro cellulose synthase activity. Protoplasma, 2006, 228(4): 221-229.

[21]

Ohmiya Y, Takeda T, Nakamura S, Sakai F, Hayashi T. Purification and properties of a wall-bound endo-1,4-β-Glucanase from suspension-cultured poplar cells. Plant Cell Physiol, 1995, 36(4): 607-614.

[22]

Ozawa K, Komamine A. Establishment of a system of high-frequency embryogenesis from long-term cell suspension cultures of rice (OrQu-2a sativa L.). Theor Appl Genet, 1989, 77(2): 205-211.

[23]

Park Y, Son SH. Regeneration of plantlets from cell suspension culture derived callus of white poplar (Populus alba L.). Plant Cell Rep, 1988, 7(7): 567-570.

[24]

Rao X, Shen H, Pattathil S, Hahn MG, Gelineo-Albersheim I, Mohnen D, Pu Y, Ragauskas AJ, Chen X, Chen F, Dixon RA. Dynamic changes in transcriptome and cell wall composition underlying brassinosteroid-mediated lignification of switchgrass suspension cells. Biotechnol Biofuels, 2017 10 1 266

[25]

Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med, 1953, 97(5): 695-710.

[26]

Shi R, Wang JP, Lin YC, Li Q, Sun YH, Chen H, Sederoff RR, Chiang VL. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa. Planta, 2017, 245(5): 927-938.

[27]

Toussaint F, Pierman B, Bertin A, Lévy D, Boutry M. Purification and biochemical characterization of NpABCG5/NpPDR5, a plant pleiotropic drug resistance transporter expressed in Nicotiana tabacum BY-2 suspension cells. Biochem J, 2017, 474(10): 1689-1703.

[28]

Tuskan GA, Difazio SP, Jansson S, Bohlmann J, Grigoriev IV, Hellsten U, Putnam NH, Ralph SG, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313(5793): 1596-1604.

[29]

Wang Z, Zhu T, Ma W, Fan E, Lu N, Ouyang F, Wang N, Yang G, Kong L, Qu G, Zhang S, Wang J. Potential function of CbuSPL and gene encoding its interacting protein during flowering in Catalpa bungei. BMC Plant Biol, 2020 20 1 105

[30]

Yu M, Yuan M, Ren H. Visualization of actin cytoskeletal dynamics during the cell cycle in tobacco (Nicotiana tabacum L. cv Bright Yellow) cells. Biol Cell, 2006, 98(5): 295-306.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/