Shade and sapling size influence restoration of Araucaria angustifolia

Simone Aparecida Zolet Sasso , José Abramo Marchese , Amanda Pacheco Cardoso Moura , Bruna Valéria Gil , Anelise Tessari Perboni , Joel Donazzolo , Fabrícia Lorrane Rodrigues Oliveira , Bruno Francisco Sant’Anna-Santos , Angela Rohr , Moeses Andrigo Danner

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (5) : 1833 -1841.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (5) : 1833 -1841. DOI: 10.1007/s11676-020-01261-0
Original Paper

Shade and sapling size influence restoration of Araucaria angustifolia

Author information +
History +
PDF

Abstract

Toward improving reforestation of Brazilian pine (Araucaria angustifolia), two contrasting sapling sizes in either full sun or in the shade of a mixed plantation and the effect of opening the canopy were evaluated for survival, growth, gas exchange, photosynthetic pigments, and leaf anatomy 18 months after being planted. At 23 months after planting, a partial opening was made in the canopy in the mixed plantation, then the saplings were evaluated again after 2 months for the same morphophysiological traits. After 18 months, saplings planted in the full sun had higher survival, growth, pigments, and photosynthesis compared to the shaded saplings. Large saplings had higher survival and growth compared to the small ones. Shaded leaves were thinner and little differentiation of palisade parenchyma and hypodermis. After opening of the canopy, photosynthetically active radiation was 10 times higher, and the saplings quickly grew in height due to increased photosynthesis. Thus, although the species can tolerate shade, growth in the shade is limited. We recommend that for reforestation purposes of Brazilian pine, large saplings should be selected and planted in the open for better development.

Keywords

Brazilian pine / Luminosity / Gas exchanges / Photosynthetic pigments / Leaf anatomy

Cite this article

Download citation ▾
Simone Aparecida Zolet Sasso, José Abramo Marchese, Amanda Pacheco Cardoso Moura, Bruna Valéria Gil, Anelise Tessari Perboni, Joel Donazzolo, Fabrícia Lorrane Rodrigues Oliveira, Bruno Francisco Sant’Anna-Santos, Angela Rohr, Moeses Andrigo Danner. Shade and sapling size influence restoration of Araucaria angustifolia. Journal of Forestry Research, 2020, 32(5): 1833-1841 DOI:10.1007/s11676-020-01261-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aasamaa K, Sõber A. Stomatal sensitivities to changes in leaf water potential, air humidity, CO2 concentration and light intensity, and the effect of abscisic acid on the sensitivities in six temperate deciduous tree species. Environ Exp Bot, 2011, 71: 72-78.

[2]

Álvares CA, Stape JL, Sentelhas PC, De Moraes Gonçalves JL, Sparovek G. Köppen’s climate classification map for Brazil. Meteorol Z, 2013, 22: 711-728.

[3]

Danner MA, Zanette F, Ribeiro JZ. O cultivo da araucária para produção de pinhões como ferramenta para a conservação. Pesqui Florestal Bras, 2012, 32: 441-451.

[4]

Dias MC, Bruggemann W. Differential inhibition of photosynthesis under drought stress in Flaveria species with different degrees of development of the C4 syndrome. Photosynthetica, 2007, 45: 75-84.

[5]

Dickison WC. Integrative plant anatomy, 2000, Cambridge, MA: Harcourt/Academic Press 533

[6]

Duarte LS, Dillenburg LR. Ecophysiological responses of Araucaria angustifolia (Araucariaceae) saplings to different irradiance levels. Aust J Bot, 2000, 48: 531-537.

[7]

Duarte LS, Dillenburg LR, Rosa LMG. Assessing the role of light availability in the regeneration of Araucaria angustifolia. Aust J Bot, 2002, 50: 741-751.

[8]

Einig W, Mertz A, Hampp R. Growth rate, photosynthetic activity, and leaf development of Brazil pine saplings (Araucaria angustifolia [Bert.] O. Ktze.). Plant Ecol, 1999, 143: 23-28.

[9]

Eisenlohr PV, Oliveira-Filho AT. Tree species composition in areas of Atlantic Forest in southeastern Brazil is consistent with a new system for classifying the vegetation of South America. Acta Bot Bras, 2014, 28: 227-233.

[10]

Ferreira DK, Nazareno AG, Mantovani A, Bittencourt R, Sebbenn AM, Reis MS. Genetic analysis of 50-year old Brazilian pine (Araucaria angustifolia) plantations: implications for conservation planning. Conserv Genet, 2012, 13: 435-442.

[11]

Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol, 2004, 6: 269-279.

[12]

Franco AMS, Dillenburg LR. Ajustes morfológicos e fisiológicos em plantas jovens de Araucaria angustifolia (Bertol.) Kuntze em resposta ao sombreamento. Hoehnea, 2007, 34: 135-144.

[13]

Gomes MP, Smedbol E, Carneiro MMLC, Garcia PJ (2014) Reactive oxygen species and plant hormones. In: Ahmad P (ed) Oxidative damage to plants: antioxidant networks and signaling. Elsevier, pp 65–88

[14]

Gratani L, Covone F, Larcher W. Leaf plasticity in response to light of three ervergreen species of the Mediterranean maquis. Trees, 2006, 20: 549-559.

[15]

Grosfeld J, Barthélémy D, Brion C. Kurmann MH, Hemsley AR. Architectural variations of Araucaria araucana (Molina) K. Koch (Araucariaceae) in its natural habitat. The evolution of plant architecture, 1999, London: Royal Botanic Gardens 109 122

[16]

Guerra MP, Silveira V, Reis MS, Schneider L. Simões LL, Lino CF. Exploração, manejo e conservação da araucária (Araucaria angustifolia). Sustentável Mata Atlântica: a exploração de seus recursos florestais, 2002, São Paulo: SENAC 85 101

[17]

IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

[18]

Johansen DA. Plant microtechnique, 1940, New York: McGraw-Hill Book Company Inc..

[19]

Kinoshita T, Hayashi Y. New insights into the regulation of stomatal opening by blue light and plasma membrane H+-ATPase. Int Rev Cell Mol Biol, 2011, 289: 89-115.

[20]

Maran JC, Rosot MAD, Radomski MI, Kellermann B. Análise de sobrevivência e germinação em plantios de Araucaria angustifolia derivado de mudas e sementes. Ci Fl, 2016, 26: 1349-1360.

[21]

R CORE TEAM (2020) R v.4.0.2: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 15 July 2020

[22]

Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv, 2009, 142: 1141-1153.

[23]

Santos SA, Tuffi-Santos LD, Sant’Anna-Santos BF, Tanaka FAO, Silva LF, Júnior AS. Influence of shading on the leaf morphoanatomy and tolerance to glyphosate in Commelina benghalensis L. and Cyperus rotundus L. Aust J Crop Sci, 2015, 9: 135-142.

[24]

Stefenon VM, Gailing O, Finkeldey R. Genetic structure of plantations and the conservation of genetic resources of Brazilian pine (Araucaria angustifolia). For Ecol Manage, 2008, 255: 2718-2725.

[25]

Szymura TH. Silver fir sapling bank in seminatural stand: individuals architecture and vitality. For Ecol Manage, 2005, 212: 101-108.

[26]

Tang H, Yuan HY, Yu WW, Song LL, Wu JS. Growth, photosynthetic and physiological responses of Torreya grandis saplings to varied light environments. Trees, 2015, 29: 1011-1022.

[27]

Thomas P (2013) Araucaria angustifolia. The IUCN red list of threatened species 2013. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T32975A2829141.en. Accessed 05 Feb 2018

[28]

Valladares F, Niinemets Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst, 2008, 39: 237-257.

[29]

Wellburn AR. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol, 1994, 144: 307-313.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/