Can small-scale altitudinal gradients predict spatial and temporal patterns in tropical forests?

Mariana Caroline Moreira Morelli , Cléber Rodrigo de Souza , Jean Daniel Morel , Vinícius Andrade Maia , Alisson Borges Miranda Santos , Kaline Fernandes Miranda , Rubens Manoel dos Santos

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (5) : 1855 -1865.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (5) : 1855 -1865. DOI: 10.1007/s11676-020-01259-8
Original Paper

Can small-scale altitudinal gradients predict spatial and temporal patterns in tropical forests?

Author information +
History +
PDF

Abstract

In tropical montane forests, compositional and structural changes are commonly driven by broad-scale altitudinal variation. Here, given the lack of knowledge on small-scale vegetation changes and temporal dynamics, we address the effects of small-scale variations in soil and altitude on tree community structure, temporal dynamics and phylogenetic diversity in a semi-deciduous tropical forest of the Atlantic Forest Domain, southeastern Brazil. In 2010 and 2015 we sampled thirty plots of 400 m2, set up along an altitudinal gradient between 1000 and 1500 m a.s.l.. In each plot, we collected soil samples for chemical and textural analyses. We fitted linear models to test the effects of altitude and soil on community dynamics and phylogenetic parameters. Altitude and soil explained the spatial variation in number of individuals and phylogenetic diversity metrics. From lower to higher altitudes, we found decreasing fertility, increasing tree density and decreasing phylogenetic diversity. Altitude significantly influenced the increases in total biomass (from 240.9 to 255.4 t ha−1) and individual biomass (from 0.15 to 0.17 t) recorded in the interval. And while community temporal dynamics had rates of 1.96% for mortality, 1.02% for recruitment, 1.61% for biomass loss and 2.81% for biomass gain, none of them were explained by altitude or soil. Temporal species substitution averaged 0.1 in the interval. Altogether, these results suggest that the small-scale variations in altitude and soil likely determine the conditions and resources that drive community assembly and structure, which are expressed by spatial variations along the altitudinal gradient. At the same time, temporal patterns were not influenced by altitude-related environmental variation, resulting in a similar dynamic behaviour across the gradient, suggesting that broad-scale factors may play a more important role than local ones.

Keywords

Fine-scale / Semideciduous forests / Montane forests / Dynamic patterns

Cite this article

Download citation ▾
Mariana Caroline Moreira Morelli, Cléber Rodrigo de Souza, Jean Daniel Morel, Vinícius Andrade Maia, Alisson Borges Miranda Santos, Kaline Fernandes Miranda, Rubens Manoel dos Santos. Can small-scale altitudinal gradients predict spatial and temporal patterns in tropical forests?. Journal of Forestry Research, 2020, 32(5): 1855-1865 DOI:10.1007/s11676-020-01259-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alves LF, Vieira SA, Scaranello MA, Camargo PB, Santos FA, Joly CA, Martinelli LA. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For Ecol Manage, 2010, 260(5): 679-691.

[2]

Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants APG IV. Bot J Linn Soc, 2016, 181: 1-20.

[3]

Appolinário V, Oliveira-Filho AT, Guilherme FA. Tree population and community dynamics in a Brazilian tropical semideciduous forest. Braz J Bot, 2005, 28(2): 347-360.

[4]

Baldeck CA, Harms KE, Yavitt JB, John R, Turner BL, Valencia R, Navarrete H, Davies JS, Chuyong GB, Kenfack D, Thomas DW, Sumedha M, Gunatilleke N, Gunatilleke S, Bunyavejchewin S, Kiratiprayoon S, Yaacob A, Surpardi MNN, Dalling JW. Soil resources and topography shape local tree community structure in tropical forests. Pro Biol Sci, 2012 280 1753 20122532

[5]

Baldeck CA, Kembel SW, Harms KE, Yavitt JB, John R, Turner BL, Madawala S, Gunatilleke N, Bunyavejchewin S, Kiratiprayoon S, Yaacob A, Supardi MNN, Valencia R, Navarrete H, Davies SJ, Chuyong GB, Kenfack D, Thomas DW, Dalling JW. Phylogenetic turnover long local environmental gradients in tropical forest communities. Oecologia, 2016, 182(2): 547-557.

[6]

Barton K (2009) MuMIn: multi-model inference. R package version 1.0.0. http://r-forge.r-project.org/projects/mumin/. (Accessed 19 Apr 2018)

[7]

Baselga A (2013) Betapart-package: Partitioning beta diversity into turnover and nestedness components. R package version 1.3. https://CRAN.R-project.org/package=betapart. (Accessed 19 Apr 2018)

[8]

Bohlman SA, Laurance WF, Laurance SG, Nascimento HE, Fearnside PM, Andrade A. Importance of soils, topography and geographic distance in structuring central amazonian tree communities. J Veg Sci, 2008, 19(6): 863-874.

[9]

Bose R, Ramesh BR, Pélissier R, Munoz F. Phylogenetic diversity in the Western Ghats biodiversity hotspot reflects environmental filtering and past niche diversification of trees. J Biogeogr, 2019, 46(1): 145-157.

[10]

Burnham KP, Anderson DR, Huyvaert KP. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol, 2011, 65(1): 23-35.

[11]

Chagas RK, Oliveira-Filho AD, van den Berg E, Scolforo JR. Dinâmica de populações arbóreas em um fragmento de floresta estacional semidecidual montana em Lavras. Minas Gerais Revista Árvore, 2001, 25(1): 39-57.

[12]

Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mmencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol, 2014, 20(10): 3177-3190.

[13]

Chisholm R, Muller-Landau HC, Rahman KA, Bebber DP, Bin Y, Bohlman SA, Bourg NA, Brinks J, Bunyavejchewin S, Butt N, Cao H, Cao M, Cárdenas D, Chang LW, Chiang JM, Chuyong G, Condit R, Dattaraja HS, Davies S, Duque A, Fletcher C, Gunatilleke N, Gunatilleke S, Hao Z, Harrison RD, Howe R, Hsieh CF, Hubbell SP, Itoh A, Kenfack D, Kiratiprayoon S, Larson AJ, Lian J, Lin D, Liu H, Lutz JA, Ma K, Malhi Y, McMahon S, McShea W, Meegaskumbura M, Razman SM, Morecroft MD, Nytch CJ, Oliveira A, Parker GG, Pulla S, PunchiManage R, RomeroSaltos H, Sang W, Schurman J, Su SH, Sukumar R, Sun IF, Suresh HS, Tan S, Thomas D, Thomas S, Valencia JTR, Wolf A, Yap S, Ye W, Yuan Z, Zimmerman JK. Scale-dependent relationships between tree species richness and ecosystem function in forests. J Ecol, 2013, 101(5): 1214-1224.

[14]

Crausbay SD, Hotchkiss SC. Strong relationships between vegetation and two perpendicular climate gradients high on a tropical mountain in Hawai’i. J Biogeogr, 2010, 37(6): 1160-1174.

[15]

Crausbay SD, Martin PH. Natural disturbance, vegetation patterns and ecological dynamics in tropical montane forests. J Trop Ecol, 2016, 32(5): 384-403.

[16]

Cuni-Sanchez A, Pfeifer M, Marchant R, Calders K, Sørensen CL, Pompeu PV, Lewis SL, Burgess ND. New insights on above ground biomass and forest attributes in tropical montane forests. For Ecol Manage, 2017, 399: 235-246.

[17]

EMBRAPA SR. Manual de métodos de análise de solo, 1997, Rio de Janeiro: Embrapa Solos.

[18]

Fine PV. Ecological and evolutionary drivers of geographic variation in species diversity. Annu Rev Ecol Evol Syst, 2015, 46: 369-392.

[19]

Finegan B, Peña-Claros M, de Oliveira A, Ascarrunz N, Bret-Harte MS, Carreño-Rocabado G, Casanoves F, Díaz S, Valepucha PE, Fernandez F, Liciona JC, Lorenzo L, Negret BS, Vaz M, Poorter L. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? testing three alternative hypotheses. J Ecol, 2015, 103(1): 191-201.

[20]

Fyllas NM, Bentley LP, Shenkin A, Asner GP, Atkin OK, Díaz S, Enquist BJ, Farfan-Rios W, Gloor E, Guerrieri R, Huasco WH, Ishida Y, Martin RE, Meir P, Phillips O, Salinas N, Silman M, Weerasinghe LK, Zaragoza-Castells J, Malhi Y. Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecol Lett, 2017, 20(6): 730-740.

[21]

Gastauer M, Thiele J, Porembski S, Neri AV. How do altitude and soil properties influence the taxonomic and phylogenetic structure and diversity of Brazilian páramo vegetation?. J Mt Sci, 2020, 17: 1045-1057.

[22]

Gerhold P, Cahill JF, Winter M, Bartish IV, Prinzing A. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct Ecol, 2015, 29(5): 600-614.

[23]

Girardin CAJ, Malhi Y, Aragao LEOC, Mamani M, Huasco WH, Durand L, Feeley KJ, Rapp J, Silva-Espejo JE, Silman M, Salinas N, Whittaker RJ. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Glob Change Biol, 2010, 16(12): 3176-3192.

[24]

Girardin CA, Farfan-Rios W, Garcia K, Feeley KJ, Jørgensen PM, Murakami AA, Pérez LC, Seidel R, Paniagua N, Claros AFF, Maldonado C, Silman M, Salinas N, Reynel C, Neill DA, Serrano M, Caballero CJ, Cuadros MLALT, Macía MJ, Killeen TJ, Malhi Y. Spatial patterns of above-ground structure, biomass and composition in a network of six Andean elevation transects. Plant Ecol Divers, 2014, 7(1–2): 161-171.

[25]

Gonmadje C, Picard N, Gourlet-Fleury S, Réjou-Méchain M, Freycon V, Sunderland T, McKey D, Doumenge C. Altitudinal filtering of large-tree species explains above-ground biomass variation in an Atlantic Central African rain forest. J Trop Ecol, 2017, 33(2): 143-154.

[26]

Gonmadje C, Doumenge C, Sunderland T, McKey D. Environmental filtering determines patterns of tree species composition in small mountains of Atlantic Central African forests. Acta Oecologica, 2019, 94: 12-21.

[27]

Hardy OJ, Couteron P, Munoz F, Ramesh BR, Pélissier R. Phylogenetic turnover in tropical tree communities: impact of environmental filtering, biogeography and mesoclimatic niche conservatism. Glob Ecol Biogeogr, 2012, 21(10): 1007-1016.

[28]

Higuchi P, Oliveira-Filho AT, Silva ACD, Machado ELM, Santos RMD, Pifano DS. Dinâmica da comunidade arbórea em um fragmento de floresta estacional semidecidual montana em Lavras, Minas Gerais, em diferentes classes de solos. Revista Árvore, 2008, 32: 417-426.

[29]

Higuchi P, Oliveira-Filho AT, Bebber DP, Brown ND, Silva AC, Machado EL. Spatio-temporal patterns of tree community dynamics in a tropical forest fragment in South-east Brazil. Plant Ecol, 2008, 199(1): 125-135.

[30]

Jiang M, Felzer BS, Nielsen UN, Medlyn BE. Biome-specific climatic space defined by temperature and precipitation predictability. Glob Ecol Biogeogr, 2017, 26(11): 1270-1282.

[31]

Jin Y, Qian H. V PhyloMaker an R package that can generate very large phylogenies for vascular plants. Ecography, 2019, 42(8): 1353-1359.

[32]

John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB. Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci, 2007, 104(3): 864-869.

[33]

Kembel SW, Cowam PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. Picante R tools for integrating phylogenies and ecology. Bioinformatics, 2010, 26: 1463-1464.

[34]

Kipkoech S, Melly DK, Mwema BW, Mwachala G, Musili PM, Hu G, Wang Q. Conservation priorities and distribution patterns of vascular plant species along environmental gradients in Aberdare ranges forest. PhytoKeys, 2019

[35]

Körner C. The use of “altitude” in ecological research. Trends Ecol Evol, 2007, 22: 569-574.

[36]

Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RB, Shurin JB, Law R, Tilman D, Gonzalez A, Loreau M. The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett, 2004, 7: 601-613.

[37]

Lieberman D, Lieberman M, Peralta R, Hartshorn GS. Mortality patterns and stand turnover rates in a wet tropical forest in Costa Rica. J Ecol, 1985, 73(3): 915-924.

[38]

Lohbeck M, Poorter L, Martínez-Ramos M, Bongers F. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology, 2015, 96(5): 1242-1252.

[39]

Lozupone C, Hamady M, Knight R. UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinform, 2006, 7: 371.

[40]

Machado ELM, Oliveira-Filho ATD. Spatial patterns of tree community dynamics are detectable in a small (4 ha) and disturbed fragment of the Brazilian Atlantic forest. Acta Botanica Brasilica, 2010, 24(1): 250-261.

[41]

Malhi Y. The productivity, metabolism and carbon cycle of tropical forest vegetation. J Ecol, 2012, 100(1): 65-75.

[42]

Malhi Y, Silman M, Salinas N, Bush M, Meir P, Saatchi S. Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Glob Change Biol, 2010, 16(12): 3171-3175.

[43]

Martin PH, Fahey TJ, Sherman RE. Vegetation zonation in a neotropical montane forest: environment, disturbance and ecotones. Biotropica, 2011, 43(5): 533-543.

[44]

Meyer PB, Oliveira-Filho AT, Botezelli L, Fontes MAL, Garcia PO, Santos RM. Dinâmica estrutural em um fragmento de Floresta Estacional Semideciduifólia em Lavras, MG. Brasil Cerne, 2015, 21(2): 259-265.

[45]

Midgley GF. Biodiversity and ecosystem function. Science, 2012, 335(6065): 174-175.

[46]

Miguel A, Marimon BS, Oliveira EAD, Maracahipes L, Marimon-Junior BH. Dinâmica da comunidade lenhosa de uma floresta de galeria na transição Cerrado-Floresta Amazônica no Leste de Mato Grosso, em um período de sete anos (1999 a 2006). Biota Neotrop, 2011, 11(1): 53-61.

[47]

Nagalingum NS, Knerr N, Laffan SW, González-Orozco CE, Thornhill AH, Miller JT, Mishler BD. Continental scale patterns and predictors of fern richness and phylogenetic diversity. Front Genet, 2015, 6: 132.

[48]

Oksanen, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) vegan: Community Ecology Package. R package version 2.5–2. https://CRAN.R-project.org/package=vegan

[49]

Oliveira-Filho AT, Fontes MAL. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate 1. Biotropica, 2000, 32(4b): 793-810.

[50]

Paine CT, Baraloto C, Chave J, Hérault B. Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests. Oikos, 2011, 120(5): 720-727.

[51]

Pan Y, Birdsey RA, Phillips OL, Jackson RB. The structure, distribution, and biomass of the world's forests. Annu Rev Ecol Evol Syst, 2013, 44: 593-622.

[52]

Poorter L, van der Sande MT, Thompson J, Arets EJMM, Alarcón A, Álvarez-Sánchez J, Ascarrunz N, Balvanera P, Barajas-Guzmán G, Boit A, Bongers F, Carvalho FA, Casanoves F, Cornejo-Tenorio G, Costa FRC, Castilho CV, Duivenvoorden JF, Dutrieux LP, Enquist BJ, Fernández-Méndez F, Finegan B, Gormley LHL, Healey JR, Hoosbeek MR, Ibarra-Manríquez G, Junqueira AB, Levis C, Licona JC, Lisboa LS, Magnusson WE, Martínez-Ramos M, Martínez-Yrizar A, Martorano LG, Maskell LC, Mazzei L, Meave JA, Mora F, Muñoz R, Nytch C, Pansonato MP, Parr TW, Paz H, Pérez-García EA, Rentería LY, Rodríguez-Velazquez J, Rozendaal DMA, Ruschel AR, Sakschewski B, Salgado-Negret B, Schietti J, Simões M, Sinclair FL, Souza PF, Souza FC, Stropp J, ter Steege H, Swenson NG, Thonicke K, Toledo M, Uriarte M, van der Hout P, Walker P, Zamora N, Peña-Claros M. Diversity enhances carbon storage in tropical forests. Glob Ecol Biogeogr, 2015, 24(11): 1314-1328.

[53]

Pugh TA, Arneth A, Kautz M, Poulter B, Smith B. Important role of forest disturbances in the global biomass turnover and carbon sinks. Nat Geosci, 2019, 12(9): 730-735.

[54]

Pulliam HR. On the relationship between niche and distribution. Ecol Lett, 2000, 3: 349-361.

[55]

Qian H, Jin Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J Plant Ecol, 2016, 9(2): 233-239.

[56]

Qian H, Hao Z, Zhang J. Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan. China J Plant Ecol, 2014, 7(2): 154-165.

[57]

Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patino S, Fyllas NM, Hodnett MG, Herrera R, Almeida S, Davila EA, Arneth A, Arroyo L, Chao KJ, Dezzeo N, Erwin T, di Fiore A, Higuchi N, Coronado EH, Jimenez EM, Killeen T, Lezama AT, Lloyd G, Lopez-González G, Luizao FJ, Malhi Y, Monteagudo A, Neill ADA, Núñez Vargas P, Paiva R, Peacock J, Peñuela MC, Peña Cruz A, Pitman N, Priante Filho N, Prieto A, Ramírez H, Rudas A, Salomão R, Santos AJB, Schmerler J, Silva N, Silveira M, Vasquez R, Vieira I, Terborgh J, Lloyd J. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 2012, 9(6): 2203-2246.

[58]

R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

[59]

Rejou-Mechain M, Tanguy A, Piponiot C, Chave J, Hérault B. biomass: an r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol Evol, 2017, 8(9): 1163-1167.

[60]

Rezende VL, Miranda PL, Meyer L, Moreira CV, Linhares MF, Oliveira-Filho AT, Eisenlohr PV. Tree species composition and richness along altitudinal gradients as a tool for conservation decisions: the case of Atlantic semideciduous forest. Biodivers Conserv, 2015, 24(9): 2149-2163.

[61]

Salinas N, Malhi Y, Meir P, Silman M, Roman Cuesta R, Huaman J, Salinas D, Huaman V, Gibaja A, Mamani M, Farfan F. The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytol, 2011, 189(4): 967-977.

[62]

Santos ABM, Carvalho WAC, Morel JD, Santos RMD, Figueiredo MAP, Cirne-Silva TM, Souza CRD. Temporal behavior of tree communities in different soil classes. Floresta e Ambiente, 2019, 26(4): 1-8.

[63]

Scolforo JS, Mello JM. Inventário Florestal, 2006, Editora UFLA: Lavras.

[64]

Sheil D, Burslem DFRP, Alder D. The interpretation of mortality rates measures. J Ecol, 1995, 83(2): 331-333.

[65]

Silva KJ, Souza AF. Common species distribution and environmental determinants in South American coastal plains. Ecosphere, 2018 9 6 e02224

[66]

Swaine MD, Lieberman D, Putz FE. The dynamics of tree populations in tropical forest: a review. J Trop Ecol, 1987, 3(4): 359-366.

[67]

Swanson ME, Franklin JF, Beschta RL, Crisafulli CM, DellaSala DA, Hutto RL, Lindenmayer DB, Swanson FJ. The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front Ecol Environ, 2011, 9(2): 117-125.

[68]

Thornhill AH, Mishler BD, Knerr NJ, González-Orozco CE, Costion CM, Crayn DM, Shawn WL, Miller JT. Continental-scale spatial phylogenetics of Australian angiosperms provides insights into ecology, evolution and conservation. J Biogeogr, 2016, 43(11): 2085-2098.

[69]

Toledo JJ, Castilho CV, Magnusson WE, Nascimento HE. Soil controls biomass and dynamics of an Amazonian forest through the shifting of species and traits. Braz J Bot, 2017, 40(2): 451-461.

[70]

Unger M, Homeier J, Leuschner C. Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia, 2012, 170(1): 263-274.

[71]

van der Putten WH, Bradford MA, Pernilla Brinkman E, van de Voorde TF, Veen GF. Where, when and how plant-soil feedback matters in a changing world. Funct Ecol, 2016, 30(7): 1109-1121.

[72]

van der Sande MT, Arets EJ, Peña-Claros M, de Avila AL, Roopsind A, Mazzei L, Ascarrunz N, Finegan B, Alarcón A, Siani AC, Licona JC, Ruschel A, Toledo M, Poorter L. Old-growth Neotropical forests are shifting in species and trait composition. Ecol Monogr, 2016, 86(2): 228-243.

[73]

Vellend M, Baeten L, Becker-Scarpitta A, Boucher-Lalonde V, McCune JL, Messier J, Myers-Smith IH, Sax DF. Plant biodiversity change across scales during the Anthropocene. Annu Rev Plant Biol, 2017

[74]

Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and community ecology. Annu Rev Ecol Syst, 2002, 33(1): 475-505.

[75]

Weiher E, Keddy P. Ecological assembly rules: perspectives, advances, retreats, 2001, Cambridge: Cambridge University Press.

[76]

Wiegand T, Huth A, Getzin S, Wang X, Hao Z, Gunatilleke CS, Gunatilleke IN. Testing the independent species’ arrangement assertion made by theories of stochastic geometry of biodiversity. Pro Biol Sci, 2012, 279(1741): 3312-3320.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/