Morphological and genetic differentiation in isolated populations of Mexican beech Fagus grandifolia subsp. mexicana

Dulce María Galván-Hernández , Pablo Octavio-Aguilar , Luis Lazcano-Cruz , Arturo Sánchez-González

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (5) : 2169 -2179.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (5) : 2169 -2179. DOI: 10.1007/s11676-020-01247-y
Original Paper

Morphological and genetic differentiation in isolated populations of Mexican beech Fagus grandifolia subsp. mexicana

Author information +
History +
PDF

Abstract

Mexican beech [Fagus grandifolia subsp. mexicana (Martinez) A.E.Murray] is a subspecies endemic to the Sierra Madre Oriental Mountains and considered endangered due to the low density of its populations and high degree of habitat fragmentation and environmental specificity. Because its morphological and genetic variation is associated with its ability to adapt to changes in environmental conditions, the objective of this study was to determine whether phenotypic and genotypic variation exist, and it relationships with population reduction events. In four beech populations in the states of Hidalgo and Veracruz, we analyzed 11 morphological variables for leaves and 6 microsatellite markers. The morphological variables that to discriminate between populations were related to the size of the leaf, but a robust differentiation pattern was not found, given that independent groups of leaves were identified. The populations located closest to each other, had greater genetic variation and less genetic distance; populations in the extreme north and south had the lowest genetic variation. Genetic differentiation among populations was associated with reduction in population size. In the 3 localities in Hidalgo, recent bottlenecks were identified, and in Veracruz, an old bottleneck was found. Variation in leaf morphology and genetic structure of Mexican beech populations could be the result of a combination of various geographical, climate and ecological factors.

Keywords

Adaptation / Bottleneck / Genetic structure / Leaf morphology / Mexico / Sierra madre oriental

Cite this article

Download citation ▾
Dulce María Galván-Hernández, Pablo Octavio-Aguilar, Luis Lazcano-Cruz, Arturo Sánchez-González. Morphological and genetic differentiation in isolated populations of Mexican beech Fagus grandifolia subsp. mexicana. Journal of Forestry Research, 2020, 32(5): 2169-2179 DOI:10.1007/s11676-020-01247-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Álvarez-Zúñiga E, Sánchez-González A, Granados SD. Analysis of leaf morphological variation in quercus laeta liebm. in Los Mármoles National Park, Hidalgo México. Rev Chapingo Ser Cie, 2009, 15(2): 87-93.

[2]

Barstow M. (2017) Fagus grandifolia. The IUCN Red List of Threatened Species 2017: e.T62004694A62004696. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T62004694A62004696.en. Accessed 26 October 18.

[3]

Capdevielle-Vargas R, Estrella N, Menzel A. Multiple-year assessment of phenological plasticity within a beech (Fagus sylvatica L.) stand in southern Germany. Agric For Meteorol, 2015, 211–212: 13-22.

[4]

Carvalho SR, Luiz PJ, Xavier CR. Morphological characterization of leaf, flower, fruit and seed traits among Brazilian Theobroma L. species. Genet Resour Crop Evol, 2012, 59(3): 327-345.

[5]

Ciocîrlan E. Comparative morphological analyses in marginal beech populations. Bull Transilv Univ Braşov Ser II For Wood Ind Agric Food Eng, 2014, 7(56): 7-12.

[6]

Cornuet JM, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 1996, 144(4): 2001-2014.

[7]

Cregan PB, Quigley CV. Caetano-Anollés G, Gresshoff PM. Simple sequence repeat DNA marker analysis. DNA markers: protocols, applications and overviews, 1997, New York: J. Wiley and Sons 173 185

[8]

Denk T, Grimm GW, Hemleben V (2005) Patterns of molecular and morphological differentiation in Fagus (Fagaceae) phylogenetic implications. Am J Bot 92(6): 1006–1016. https:// doi.org/https://doi.org/10.3732/ajb.92.6.1006.

[9]

Dolnicki A, Kraj W. Leaf morphology and the dynamics of frost-hardiness of shoots in two phenological forms of European beech (Fagus sylvatica L.) from southern Poland. EJPAU, 2001 4 2 1

[10]

Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19(1): 11-15.

[11]

Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour, 2012, 4: 359-361.

[12]

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14(8): 2611-2620.

[13]

Fang J, Lechowicz MJ. Climatic limits for the present distribution of beech (Fagus L) species in the world. J Biogeogr, 2006, 33(10): 1804-1819.

[14]

Frank A, Pluess AR, Howe GT, Sperisen C, Heiri C. Quantitative genetic differentiation and phenotypic plasticity of European beech in a heterogeneous landscape: indications for past climate adaptation. Perspect Plant Ecol Syst, 2017, 26: 1-13.

[15]

Frankham R, Ballou JD, Briscoe DA. Introduction to conservation genetics, 2012, Cambridge UK: Cambridge University Press 175 196

[16]

Galván-Hernández DM, Lozada-García JA, Flores-Estévez N, Galindo-González J, Vázquez-Torres SM. Variation and genetic structure in Platanus mexicana (Platanaceae) along riparian altitudinal gradient. Int J Mol Sci, 2015, 16(1): 2066-2077.

[17]

Hammer O, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron, 2001, 4: 9.

[18]

Hatziskakis S, Tsiripidis I, Papageorgiou AC. Leaf morphological variation in beech (Fagus sylvatica L.) populations in Greece and its relation to their post-glacial origin. Bot J Linn Soc, 2011, 165(4): 422-436.

[19]

Housset JM, Carcaillet C, Girardin MP, Xu H, Tremblay F, Bergeron Y. In situ comparison of tree-ring responses to climate and population genetics: the need to control for local climate and site variables. Front Ecol Evol, 2016, 4: 123.

[20]

Houston DB, Houston DR. Variation in American beech (Fagus grandifolia Ehrh): Isozyme analysis of genetic structure in selected stands. Silvae Genet, 1994, 43(5–6): 277-284.

[21]

Iglesias-Andreu LG, Octavio-Aguilar P, Vovides AP, Meerow AW, de Cáceres-González FFN, Galván-Hernández DM. Extinction risk of Zamia inermis (Zamiaceae): a genetic approach for the conservation of its single natural population. Int J Plant Sci, 2017, 178(9): 715-723.

[22]

Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 2007, 23(14): 1801-1806.

[23]

Kaufman L, Rousseeuw PJ. Finding groups in data: an introduction to cluster analysis, 1990, New York: John Wiley & Sons 199 252

[24]

Kitamura K, Kawano S. Regional differentiation in genetic components for the American beech, Fagus grandifolia Ehrh., in relation to geological history and mode of reproduction. J Plant Res, 2001, 114(1115): 353-368.

[25]

Kitamura K, Takasu H, Hagiwara S, Homma K, O′neill J, Whigham DF, Kawano S. Demographic genetics of American beech (Fagus grandifolia Ehrh.) IV. development of genetic variability and gene flow during succession in a coastal plain forest in Maryland. Plant Sp Biol, 2008, 23: 159-173.

[26]

Koch JL, Carey DW, Mason ME. Use of microsatellite markers in an American beech (Fagus grandifolia) population and paternity testing. Silvae Genet, 2010, 59(2): 62-68.

[27]

Lazar I, Lazar I (2010) Gel Analyzer 2010a: Freeware 1D gel electrophoresis image analysis software. Available online: https://www.gelanalyzer.com Accessed 10 October 18.

[28]

Li-Ping J, Huei-Chuan S, Yu-Chung C. Microsatellite primers for the endangered beech tree, Fagus hayatae (Fagaceae). Am J Bot, 2012

[29]

Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res, 1967, 27(2): 209-220.

[30]

Miller MP (1997) Tools for population genetic analyses (TFPGA) version 1.3. A Windows program for the analysis of allozyme and molecular population genetic data. Logan. UT, USA: Utah State University, pp 17–23

[31]

Montiel-Oscura D, Ramírez-Herrera C, Ángeles-Pérez G, López-Upton J, Antonio-López P. Allozyme variation and population size of haya mexicana (Fagus grandifolia subsp. mexicana) in the Sierra Madre Oriental. Rev Fitotec Mex, 2013, 36(4): 413-420.

[32]

Murtagh F, Legendre P. Ward´s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion?. J Classif, 2014, 31(3): 274-295.

[33]

Octavio-Aguilar P, Iglesias-Andreu LG, de Cáceres-González FFN, Galván-Hernández DM. Fine-scale of Zamia furfuracea: variation with life-cycle stages. Int J Plant Sci, 2017, 178(1): 57-66.

[34]

Ortiz-Quijano AB, Sánchez-González A, López-Mata L, Villanueva-Díaz J. Population structure of Fagus grandifolia subsp mexicana in the cloud forest of Hidalgo state, Mexico. Bot Sci, 2016, 94(3): 483-497.

[35]

Ortiz-Quijano AB, Cuevas-Cardona C, Villanueva-Díaz J, López-Mata L, Sánchez-González A. Dendrochronological reconstruction of environmental history of Fagus grandifolia subsp. mexicana in Mexico. Tree Ring Res, 2018, 74(1): 108-119.

[36]

Pastorelli R, Smulders MJM, Van′t Westende WPC, Vosman B, Giannini R, Vettori C, Vendtamin GG. Characterization of microsatellite markers in Fagus sylvatica L. and Fagus orientalis lipsky. Mol Ecol Resour, 2003, 3(1): 76-78.

[37]

Peakall ROD, Smouse PE. GENALEX 6: genetic analysis in excel. population genetic software for teaching and research. Mol Ecol Notes, 2006, 6(1): 288-295.

[38]

Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Moto M. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor Appl Genet, 1998, 97(8): 1248-1255.

[39]

Pigliucci M. Phenotypic plasticity: beyond nature and nurture, 2001, Baltimore, Maryland: The John Hopkins University Press 1 12

[40]

Piry S, Luikart G, Cornuet JM. Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered, 1999, 90(4): 502-503.

[41]

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945-959.

[42]

Rodríguez-Ramírez ECh, Sánchez-González A, Ángeles-Pérez G. Current distribution and coverage of Mexican beech forest Fagus grandifolia subsp. mexicana in Mexico. Endangered Species Res, 2013, 20(3): 205-216.

[43]

Rodríguez-Ramírez ECh, Sánchez-González A, Ángeles-Pérez G. Relationship between vegetation structure and microenvironment in Fagus grandifolia subsp mexicana forest relicts in Mexico. J Plant Ecol, 2018, 11(2): 237-247.

[44]

Rohlf JF (2005) Tps Dig, version 2.04. Department of Ecology and Evolution, New York: State University of New York at Stony Brook. https://tpsdig2.software.informer.com/

[45]

Rosenberg NA. DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes, 2004, 4(1): 137-138.

[46]

Rowden A, Robertson A, Allnutt T, Heredia S, Williams-Linera G, Newton AC. Conservation genetics of Mexican beech. Fagus grandifolia var mexicana Conserv Gen, 2004, 5(4): 475-484.

[47]

Schlichting CD. De Witt TJ, Scheiner SM. The role of phenotypic plasticity in diversification. Phenotypic plasticity: functional and conceptual approaches, 2004, Oxford: Oxford University Press 191 200

[48]

SEMARNAT, Ministry of the Environment and Natural Resources. Official MEXICAN STANDARD NOM-059-SEMARNAT-2010, environmental protection –Mexico's native species of wild flora and fauna–risk categories and specifications for inclusion, exclusion or change–List of species at risk, 2010, Ministry of the Interior (SEGOB): Official Gazette of the Federation. Mexico 62 63

[49]

Skosyrev VS, Vasil′eva GV, Lomaeva MG, Malachova LV, Antipova VN, Bezlepkin VG. Specialized software product for comparative analysis of multicomponent DNA fingerprints. Russ J Genet, 2013, 49(4): 464-469.

[50]

Slatkin M, Barton NH. A comparison of three indirect methods for estimating average levels of gene flow. Evolution, 1989, 43(7): 1349-1368.

[51]

StatSoft (2014) STATISTICA (data analysis software system), Version 10. https://www.statsoft.com .

[52]

Vargas-Rodríguez YL, Platt WJ, Vázquez-García JA, Boquin G. Selecting relict montane cloud forests for conservation priorities: the case of western Mexico. Nat Areas J, 2010, 30(2): 156-173.

[53]

Via S, Lande R. Genotype-environment interaction and the evolution of the phenotypic plasticity. Evolution, 1985, 39(3): 505-522.

[54]

Williams-Linera G, Rowden A, Newton AC. Distribution and stand characteristics of relict populations of Mexican beech (Fagus grandifolia var. mexicana). Biol Conserv, 2003, 109(1): 27-36.

[55]

Winn AA, Gross KL. Latitudinal variation in seed weight and flower number in Prunella vulgaris. Oecologia, 1993, 93(1): 55-62.

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/