Uncertainties in above ground tree biomass estimation

Lihou Qin , Shengwang Meng , Guang Zhou , Qijing Liu , Zhenzhao Xu

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (5) : 1989 -2000.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (5) : 1989 -2000. DOI: 10.1007/s11676-020-01243-2
Original Paper

Uncertainties in above ground tree biomass estimation

Author information +
History +
PDF

Abstract

Models of above-ground tree biomass have been widely used to estimate forest biomass using national forest inventory data. However, many sources of uncertainty affect above-ground biomass estimation and are challenging to assess. In this study, the uncertainties associated with the measurement error in independent variables (diameter at breast height, tree height), residual variability, variances of the parameter estimates, and the sampling variability of national inventory data are estimated for five above-ground biomass models. The results show sampling variability is the most significant source of uncertainty. The measurement error and residual variability have negligible effects on forests above-ground biomass estimations. Thus, a reduction in the uncertainty of the sampling variability has the greatest potential to decrease the overall uncertainty. The power model containing only the diameter at breast height has the smallest uncertainty. The findings of this study provide suggestions to achieve a trade-off between accuracy and cost for above-ground biomass estimation using field work.

Keywords

Above-ground biomass / Measurement error / Residual variability / Parameter estimates / Sampling variability

Cite this article

Download citation ▾
Lihou Qin, Shengwang Meng, Guang Zhou, Qijing Liu, Zhenzhao Xu. Uncertainties in above ground tree biomass estimation. Journal of Forestry Research, 2020, 32(5): 1989-2000 DOI:10.1007/s11676-020-01243-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alongi DM, Clough BF, Dixon P, Tirendi F. Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees, 2003, 17(1): 51-60.

[2]

Berger A, Gschwantner T, McRoberts RE, Schadauer K. Effects of measurement errors on individual tree stem volume estimates for the Austrian National Forest Inventory. For Sci, 2014, 60(1): 14-24.

[3]

Bonan GB, Pollard D, Thompson SL. Effects of boreal forest vegetation on global climate. Nature, 1992, 359(6397): 716-718.

[4]

Breidenbach J, Antón-Fernández C, Petersson H, McRoberts RE, Astrup R. Quantifying the model-related variability of biomass stock and change estimates in the Norwegian National Forest Inventory. For Sci, 2014, 60(1): 25-33.

[5]

Butt N, Slade E, Thompson J, Malhi Y, Riutta T. Quantifying the sampling error in tree census measurements by volunteers and its effect on carbon stock estimates. Ecol Appl, 2013, 23(4): 936-943.

[6]

Cecep K, Topik H, Tatang T, Omo R, Istomo. . Allometric models for above- and below-ground biomass of sonneratia spp. Glob Ecol Conserv, 2018, 15: e00417.

[7]

Chave J, Condit R, Lao S, Caspersen JP, Foster RB, Hubbell SP. Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. J Ecol, 2003, 91: 240-252.

[8]

Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R. Error propagation and scaling for tropical forest biomass estimates. Philos Trans R Soc Lond Ser B Biol Sci, 2004, 359(1443): 409-420.

[9]

Chen Q, Vaglio Laurin G, Valentini R. Uncertainty of remotely sensed aboveground biomass over an African tropical forest: propagating errors from trees to plots to pixels. Remote Sens Environ, 2015, 160: 134-143.

[10]

Corona P, Fattorini L, Franceschi S, Scrinzi G, Torresan C. Estimation of standing wood volume in forest compartments by exploiting airborne laser scanning information: model-based, design-based, and hybrid perspectives. Can J For Res, 2014, 44: 1303-1311.

[11]

Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci, 1986, 1(1): 54-75.

[12]

Elzinga C, Shearer RC, Elzinga G. Observer variation in tree diameter measurements. West J Appl For, 2005, 20(2): 134-137.

[13]

Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK. Global consequences of land use. Science, 2005, 309(5734): 570-574.

[14]

Fu Y, Lei Y, Zeng W, Hao R, Zhang G, Zhong Q, Xu M. Uncertainty assessment in aboveground biomass estimation at the regional scale using a new method considering both sampling error and model error. Can J For Res, 2017, 47(8): 1095-1103.

[15]

Gertner GZ. The sensitivity of measurement error in stand volume estimation. Can J For Res, 1990, 20(6): 800-804.

[16]

Gharun M, Possell M, Jenkins ME, Poon LF, Bell TL, Adams MA. Improving forest sampling strategies for assessment of fuel reduction burning. For Ecol Manag, 2017, 392: 78-89.

[17]

Goodman RC, Phillips OL, Baker TR. The importance of crown dimensions to improve tropical tree biomass estimates. Ecol Appl, 2014, 24(4): 680-698.

[18]

Guo H, Zhang M, Xu L, Yuan Z, Qin L, Chen T. Simulation of regional forest carbon storage under different sampling densities. Acta Ecol Sin, 2016, 36(14): 4373-4385.

[19]

Hinkley DV. Bootstrap methods. J R Stat Soc, 1988, 50(3): 321-337.

[20]

Hosmer DW, Lemeshow S. Applied logistic regression, 1989, New York: Wiley 307

[21]

Jenkins JC, Chojancky DC, Heath LS, Birdsey RA (2004) Comprehensive database of diameter-based biomass regressions for North American tree species. U.S. Department of Agriculture, Forest Service, Northeastern Research Station, Newtown Square, PA

[22]

Keller M, Palace M, Hurtt G. Biomass estimation in the Tapajos National Forest, Brazil: examination of sampling and allometric uncertainties. For Ecol Manag, 2001, 154(3): 371-382.

[23]

Ketterings QM, Coe R, van Noordwijk M, Ambagau’ Y, Palm CA. . Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For Ecol Manag, 2001, 146(1): 199-209.

[24]

Lambert MC, Ung CH, Raulier F. Canadian national tree aboveground biomass equations. Can J For Res, 2005, 35(8): 1996-2018.

[25]

Li H, Fa L. Height-diameter model for major tree species in China using the classified height method. Sci Silvae Sin, 2011, 47(10): 83-90.

[26]

Martínez-Sánchez JL, Martínez-Garza C, Cámara L, Castillo O. Species-specific or generic allometric equations: which option is better when estimating the biomass of Mexican tropical humid forests?. Carbon Manag, 2020, 11(3): 241-249.

[27]

Mauya EW, Hansen EH, Gobakken T, Bollandsås OM, Malimbwi RE, Næsset E. Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania. Carbon Balance Manag, 2015 10 1 10

[28]

McRoberts RE, Westfall JA. Effects of uncertainty in model predictions of individual tree volume on large area volume estimates. For Sci, 2013, 60(1): 34-42.

[29]

McRoberts RE, Westfall JA. Propagating uncertainty through individual tree volume model predictions to large-area volume estimates. Ann For Sci, 2016, 73(3): 625-633.

[30]

McRoberts RE, Hahn JT, Hefty GJ, Cleve JRV. Variation in forest inventory field measurements. Can J For Res, 1994, 24(9): 1766-1770.

[31]

McRoberts RE, Moser P, Zimermann Oliveira L, Vibrans AC. A general method for assessing the effects of uncertainty in individual-tree volume model predictions on large-area volume estimates with a subtropical forest illustration. Can J For Res, 2014, 45(1): 44-51.

[32]

McRoberts RE, Chen Q, Domke GM, Stahl G, Saarela S, Westfall JA. Hybrid estimators for mean aboveground carbon per unit area. For Ecol Manag, 2016, 378: 44-56.

[33]

Molto Q, Rossi V, Blanc L. Error propagation in biomass estimation in tropical forests. Methods Ecol Evol, 2013, 4(2): 175-183.

[34]

Muller-Landau HC, Condit RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin S, Davies S, Foster R, Gunatilleke S, Gunatilleke N, Harms KE, Hart T, Hubbell SP, Itoh A, Kassim AR, LaFrankie JV, Lee HS, Losos E, Makana JR, Ohkubo T, Sukumar R, Sun IF, Nur Supardi MN, Tan S, Thompson J, Valencia R, Muñoz GV, Wills C, Yamakura T, Chuyong G, Dattaraja HS, Esufali S, Hall P, Hernandez C, Kenfack D, Kiratiprayoon S, Suresh HS, Thomas D, Vallejo MI, Ashton P. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol Lett, 2006, 9(5): 575-588.

[35]

Ngomanda A, Engone Obiang NL, Lebamba J, Moundounga Mavouroulou Q, Gomat H, Mankou GS, Loumeto J, Midoko Iponga D, Kossi Ditsouga F, Zinga Koumba R, BobéKH B, Mikala Okouyi C, Nyangadouma R, Lépengué N, Mbatchi B, Picard N. Site-specific versus pantropical allometric equations: which option to estimate the biomass of a moist central African forest?. For Ecol Manag, 2014, 312: 1-9.

[36]

Peter B, Tom N. Effects of basal area factor and plot size on precision and accuracy of forest inventory estimates. North J Appl For, 2011, 28(28): 152-156.

[37]

Petersson H, Holm S, Ståhl G, Alger D, Fridman J, Lehtonen A, Lundström A, Mäkipää R. Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass—a comparative study. For Ecol Manag, 2012, 270: 78-84.

[38]

Picard N, Boyemba Bosela F, Rossi V. Reducing the error in biomass estimates strongly depends on model selection. Ann For Sci, 2015, 72(6): 811-823.

[39]

Qin L, Liu Q, Zhang M, Saeed S. Effect of measurement errors on the estimation of tree biomass. Can J For Res, 2019, 49(11): 1371-1378.

[40]

Rubin DB. Multiple imputation for nonresponse in surveys, 1987, New York: Wiley 258

[41]

Salk CF, Chazdon RL, Andersson KP. Detecting landscape-level changes in tree biomass and biodiversity: methodological constraints and challenges of plot-based approaches. Can J For Res, 2013, 43(9): 799-808.

[42]

Shen J. Establishment and application of relative H curve models for main tree species Type in Ji'an. Jiangxi For Sci Technol, 2002, 1: 16-19.

[43]

Shettles M, Temesgen H, Gray AN, Hilker T. Comparison of uncertainty in per unit area estimates of aboveground biomass for two selected model sets. For Ecol Manag, 2015, 354: 18-25.

[44]

Sileshi GW. A critical review of forest biomass estimation models, common mistakes and corrective measures. For Ecol Manag, 2014, 329: 237-254.

[45]

Ståhl G, Saarela S, Schnell S, Holm S, Breidenbach J, Healey SP, Patterson PL, Magnussen S, Naesset E, McRoberts RE, Gregoire TG. Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation. For Ecosyst, 2016, 2(2016): 153-163.

[46]

Temesgen H, Affleck D, Poudel K, Gray A, Sessions J. A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scand J For Res, 2015, 30(4): 326-335.

[47]

van Breugel M, Ransijn J, Craven D, Bongers F, Hall JS. Estimating carbon stock in secondary forests: decisions and uncertainties associated with allometric biomass models. For Ecol Manag, 2011, 262(8): 1648-1657.

[48]

Wallner A, Elatawneh A, Schneider T, Kindu M, Ossig B, Knoke T. Remotely sensed data controlled forest inventory concept. Eur J Remote Sens, 2018, 51(1): 75-87.

[49]

Wang G, Oyana T, Zhang M, Adu-Prah S, Zeng S, Lin H, Se J. Mapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite images. For Ecol Manag, 2009, 258(7): 1275-1283.

[50]

Wang J, Tang J, Guo Y, Gao Y, Yao Y. Aboveground biomass estimation model of two shrubs to Aohan banner northern wind-sandy area in Inner Mongolia. Agric Eng, 2015, 5(6): 44-47.

[51]

Wayson CA, Johnson KD, Cole JA, Olguín MI, Carrillo OI, Birdsey RA. Estimating uncertainty of allometric biomass equations with incomplete fit error information using a pseudo-data approach: methods. Ann For Sci, 2015, 72(6): 825-834.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/