Collembola communities and soil conditions in forest plantations established in an intensively managed agricultural area

István Harta , Barbara Simon , Szergej Vinogradov , Dániel Winkler

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (5) : 1819 -1832.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (5) : 1819 -1832. DOI: 10.1007/s11676-020-01238-z
Original Paper

Collembola communities and soil conditions in forest plantations established in an intensively managed agricultural area

Author information +
History +
PDF

Abstract

The challenges of a changing climate have directed greater attention to afforestation, but the effects of afforestation on soil fertility and soil biota have not been fully clarified. To explore changes in the soil conditions in two 20-year-old forest plantations established in formerly intensively fertilized plots of agricultural land, we focused on the current developmental state of the sites that received the most fertilizer and evaluated soil properties and Collembola (springtails) communities. Sessile oak (Quercus petraea) and black locust (Robinia pseudoacacia) that had been planted in the afforestation sites were assessed for differences between plantations of native and invasive species. Five adjacent reference associations, including forests and open habitats, were also analyzed and compared. Results showed that the soils in the two afforested sites were similar in their properties and Collembola communities to those of the control cultivated forests, but differed from each other in pH, calcium, phosphorus, and ammonium content. The available potassium and phosphorus contents in the soil of the sessile oak plantation were still high, while the soil organic matter content was adequate (SOM > 2.0%) in both plantations. Species richness of Collembola ranged from 18 in the cultivated arable land to 43 in the relict forest. Only a few species typical for forests (e.g., Neanura muscorum, Isotomiella minor, Entomobrya muscorum) were detected in the young plantations, while species characteristic of open habitats (e.g., Protaphorura campata, Lepidocyrtus cyaneus) occurred as well. Although more individuals and species of Collembola were present in the soil of young plantations than in arable fields, their community diversities were significantly lower compared to the control forest stands. Collembola community diversity differed significantly also between the two plantation types (with native and non-native tree species). Mean abundance in the afforested sites was about 2.5 times higher than in the cultivated arable land, yet far lower than the mean abundance in the control forests.

Keywords

Afforestation / Diversity / Fertilizers / Soil fauna / Soil properties / Springtails

Cite this article

Download citation ▾
István Harta, Barbara Simon, Szergej Vinogradov, Dániel Winkler. Collembola communities and soil conditions in forest plantations established in an intensively managed agricultural area. Journal of Forestry Research, 2020, 32(5): 1819-1832 DOI:10.1007/s11676-020-01238-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allison LE, Moodie CD. Black CA. Volumetric calsimeter methods of soil analysis, part 2. Chemical and microbiological properties. American society of agronomy. Wisconsin: Inc, 1965, Washington: Publisher Madison 1389 1392

[2]

Alvarez T, Frampton GK, Goulson D. The role of hedgerows in the recolonisation of arable fields by epigeal Collembola. Pedobiologia, 2000, 44: 516-526.

[3]

Alvarez T, Frampton GK, Goulson D. Epigeic Collembola in winter wheat under organic, integrated and conventional farm management regimes. Agr Ecosyst Environ, 2001, 83: 95-110.

[4]

Arbea JI, Jordana R. Effectode una repoblacion con coniferas en un robledal de Navarra sobre los Colemholos edaficos. Bol Soc Port Entomol, 1985, 2: 277-286.

[5]

Arneth A, Harrison SP, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ, Feichter J, Korhola A, Kulmala M, O’Donnell D, Schurgers G, Sorvari S, Vesala T. Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci, 2010, 3: 525-532.

[6]

Auclerc A, Ponge JF, Barot S, Dubs F. Experimental assessment of habitat preference and dispersal ability of soil springtails. Soil Biol Biochem, 2009, 41: 1596-1604.

[7]

Bardgett RD, Chan KF. Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems. Soil Biol Biochem, 1999, 31: 1007-1014.

[8]

Bardgett RD, Yeates GW, Anderson JM. Bardgett RD, Usher MB, Hopkins DW. Patterns and determinants of soil biological diversity. Biological diversity and function in soils, 2005, Cambridge: Cambridge University Press 100 118

[9]

Bartha D (2000) Erdőterület csökkenések, fafaj változások a Kárpát-medencében. In: R Várkonyi Á (ed) Táj és történelem—Tanulmányok a történeti ökológia világából. Budapest: Osiris Kiadó, pp 11–24. (in Hungarian)

[10]

Berthrong ST, Jobbágy EG, Jackson RB. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol Appl, 2009, 19: 2228-2241.

[11]

Bezkorovaynaya IN. Binkley D, Menyailo O. The formation of soil invertebrate communities in the Siberian afforestation experiment. Tree species effects on soils: implications for global change, 2005, Dordrecht: Springer 307 316

[12]

Bonan GB. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 2008, 320: 1444-1449.

[13]

Bouwman AF, Leemans R. McFee WF, Kelly FM. The role of forest soils in the global carbon cycle. Carbon forms and functions in forest soils, 1995, Soil Science Society of America: Madison 503 525

[14]

Bray JR, Curtis JT. An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr, 1957, 27: 325-349.

[15]

Bremer LL, Farley KA. Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers Conserv, 2010, 19: 3893-3915.

[16]

Brussaard L, de Ruiter PC, Brownc GB. Soil biodiversity for agricultural sustainability. Agr Ecosyst Environ, 2007, 121: 233-244.

[17]

Buzás I. Soil—and agrochemical methods manual. Part 1. INDA 4231, 1993, Budapest: Kiadó 357 in Hungarian

[18]

Campagnaro T, Brundu G, Sitzia T. Five major invasive alien tree species in European Union forest habitat types of the Alpine and Continental biogeographical regions. J Nat Conserv, 2018, 43: 227-238.

[19]

Canadell JG, Raupach MR. Managing forests for climate change mitigation. Science, 2008, 320: 1456-1457.

[20]

Chauvat M, Wolters V, Dauber J. Response of collembolan communities to land-use change and grassland succession. Ecography, 2007, 3: 183-192.

[21]

Chen CR, Condron LM, Davis MR, Sherlock RR. Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil. Plant Soil, 2000, 220: 151-163.

[22]

Chen CR, Condron LM, Xu ZH. Impacts of grassland afforestation with coniferous trees on soil phosphorus dynamics and associated microbial processes: a review. Forest Ecol Manag, 2008, 255: 396-409.

[23]

Collins HP, Elliott ET, Paustian K, Bundy LG, Dick WA, Huggins DR, Smucker AJM, Paul EA. Soil carbon pools and fluxes in long-term corn belt agroecosystems. Soil Biol Biochem, 2000, 32: 157-168.

[24]

Copenhaver MD, Holland B. Computation of the distribution of the maximum studentized range statistic with application to multiple significance testing of simple effects. J Stat Comput Sim, 1988, 30: 1-15.

[25]

Cortet J, Ronce D, Poinsot-Balaguer N, Beaufreton C, Chabert A, Viaux P, de Fonseca JPC. Impacts of different agricultural practices on the biodiversity of microarthropod communities in arable crop systems. Eur J Soil Biol, 2002, 38: 239-244.

[26]

Culik MP, Souza JL, Ventura JA. Biodiversity of Collembola in tropical agricultural environments of Espı́rito Santo, Brazil. Appl Soil Ecol, 2002, 21: 49-58.

[27]

Cunningham SC, Mac Nally R, Baker PJ, Cavagnaro TR, Beringer J, Thomson JR, Thompson RM. Balancing the environmental benefits of reforestation in agricultural regions. Perspect Plant Ecol, 2015, 17: 301-317.

[28]

Dányi L, Traser G. An annotated checklist of the springtail fauna of Hungary (Hexapoda: Collembola). Opuscula Zool, 2008, 38: 3-82.

[29]

Debeljak M, Cortet J, Demšar D, Krogh PH, Džeroski D. Hierarchical classification of environmental factors and agricultural practices affecting soil fauna under cropping systems using Bt maize. Pedobiologia, 2007, 51: 229-238.

[30]

Deharveng L. Soil Collembola diversity, endemism, and reforestation: a case study in the Pyrenees (France). Conserv Biol, 1996, 10: 74-84.

[31]

Del Galdo I, Six J, Peressotti A, Cotrufo MF. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Glob Change Biol, 2003, 9: 1204-1213.

[32]

Demeny K, Centeri C. Habitat loss, soil and vegetation degradation by land use change in the Gödöllő Hillside, Hungary. Cereal Res Commun, 2008, 36: 1739-1742.

[33]

Deng Q, McMahon DE, Xiang Y, Yu CL, Jackson RB, Hui D. A global meta-analysis of soil phosphorus dynamics after afforestation. New Phytol, 2017, 213: 181-192.

[34]

Dövényi Z. Inventory of microregions in Hungary, 2010, Budapest: HAS Geographical Research Institute 876 in Hungarian

[35]

Dunger W. Die Entwicklung der Bodenfauna auf rekultivierten Kippen und Halden des Braunkohlentagesbaues. Abh Ber Naturkundemus Görlitz, 1968, 43: 1-256.

[36]

Dunger W, Schulz H-J, Zimdars B. Colonization behaviour of Collembola under different conditions of dispersal. Pedobiologia, 2002, 46: 316-327.

[37]

Dunn OJ. Multiple comparisons using rank sums. Technometrics, 1964, 6: 241-252.

[38]

Farley KA, Kelly EF. Effects of afforestation of a páramo grassland on soil nutrient status. Forest Ecol Manag, 2004, 195: 281-290.

[39]

Farley KA, Jobbágy EG, Jackson RB. Effects of afforestation on water yield: a global synthesis with implications for policy. Glob Change Biol, 2005, 11: 1565-1576.

[40]

Farley KA, Piñeiro G, Palmer SM, Jobbágy EG, Jackson RB. Stream acidification and base cation losses with grassland afforestation. Water Resour Res, 2008, 44: W00A03.

[41]

Filser J, Mebes KH, Winter K, Lang A, Kampichler C. Long-term dynamics and interrelationships of soil Collembola and microorganisms in an arable landscape following land use change. Geoderma, 2002, 105: 201-221.

[42]

Frampton GK. The potential of Collembola as indicators of pesticide usage: evidence and methods from the UK arable ecosystem. Pedobiologia, 1997, 41: 179-184.

[43]

Füleky G, Debreczeni B. Nutrient accumulation in the soil of a 17-year maize monoculture. Agrokem Talajt, 1991, 40: 119-130.

[44]

Füleky G, Kovacs K. Effects of fertilization in long-term trials on brown forest soil at Gödöllő III - Soil Properties. Növénytermelés, 1993, 42: 527-537. (in Hungarian)

[45]

Gao Y, Dang P, Zhao Z. Effects of afforestation on soil carbon and its fractions: a case study from the Loess Plateau, China. J For Res, 2018, 29: 1291-1297.

[46]

Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci Usa, 2010, 107: 16732-16737.

[47]

Giller KE, Beare MH, Lavelle P, Izac AM, Swift MJ. Agricultural intensification, soil biodiversity and agroecosystem function. Appl Soil Ecol, 1997, 6: 3-16.

[48]

Gruss IA, Twardowski JP. Quantitative and ecological characteristic of springtails (Hexapoda: Collembola) assemblages on winter rye field, cultivated in a long-term monoculture and five-crop rotation. J Res Appl Agric Engng, 2012, 57: 129-132.

[49]

Guo LB, Gifford RM. Soil carbon stocks and land use change: a meta analysis. Glob Change Biol, 2002, 8: 345-360.

[50]

Hammer Ř, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron, 2001, 4: 1-9.

[51]

Harta I, Winkler D, Füleky G. Impact of former long-term fertilization on springtail communities in a reforested experimental area. Columella, 2018, 5: 13-25.

[52]

Hasegawa M, Fukuyama K, Makino SI, Okochi I, Goto H, Mizoguchi T, Sakata T, Tanaka H. Collembolan community dynamics during deciduous forests regeneration in Japan. Pedobiologia, 2006, 50: 117-126.

[53]

Heiniger C, Barot S, Ponge J-F, Salmon S, Botton-Divet L, Carmignac D, Dubs F. Effect of habitat spatiotemporal structure on collembolan diversity. Pedobiologia, 2014, 57(2): 103-117.

[54]

Hiol FH, Dixton RK, Curl EA. The feeding preference of mycophagous Collembola varies with the ectomycorrhizal symbiont. Mycorrhiza, 1994, 5: 99-103.

[55]

Hoogmoed M, Cunningham SC, Thomson JR, Baker PJ, Beringer J, Cavagnaro TR. Does afforestation of pastures increase sequestration of soil carbon in Mediterranean climates?. Agr Ecosyst Environ, 2012, 159: 176-183.

[56]

Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr, 2005, 75: 3-35.

[57]

Hopkin SP. Biology of the Springtails (Insecta: Collembola), 1997, Oxford: Oxford University Press 330

[58]

Huang Z, Ouyang Z, Li F, Zheng H, Wang X. Response of runoff and soil loss to reforestation and rainfall type in red soil region of southern China. J Environ Sci, 2010, 22: 1765-1773.

[59]

Hutcheson K. A test for comparing diversities based on the Shannon formula. J Theor Biol, 1970, 29: 151-154.

[60]

IUSS Working Group. World reference base for soil resources 2014 international soil classification system for naming soils and creating legends for soil maps, 2014, Rome: FAO 298

[61]

Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA. How strongly can forest management influence soil carbon sequestration?. Geoderma, 2007, 137: 253-268.

[62]

Jobbágy EG, Jackson RB. Patterns and mechanisms of soil acidification in the conversion of grasslands to forests. Biogeochemistry, 2003, 64: 205-229.

[63]

Jongman RHG. Homogenisation and fragmentation of the European landscape: ecological consequences and solutions. Landsc Urban Plan, 2002, 58(2–4): 211-221.

[64]

Kaczmarek M, Kajak A. Microarthropods and decomposition processes in meadows of various plant species richness. Ekologia Polska, 1997, 45: 795-813.

[65]

Kalia A, Gosal SK. Effect of pesticide application on soil microorganisms. Archiv Agr Soil Sci, 2011, 57: 569-596.

[66]

Kaneda S, Kaneko N. Collembolans feeding on soil affect carbon and nitrogen mineralization by their influence on microbial and nematode activities. Biol Fert Soils, 2008, 44: 435-442.

[67]

Kladivko EJ. Tillage systems and soil ecology. Soil Till Res, 2001, 61: 61-76.

[68]

Konkoly-Gyuró É, Balázs P. Forest cover change in the Carpathian Basin from the mid 19th century till nowadays. Bull For Sci, 2016, 6: 79-97.

[69]

Kováč L, Miklisová D. Collembolan communities (Hexapoda: Collembola) in arable soils of East Slovakia. Pedobiologia, 1997, 41: 62-68.

[70]

KSH (2019) Hungarian central statistical office: dissemination database. https://statinfo.ksh.hu/Statinfo/ Accessed 14 March 2014

[71]

Laganière J, Angers DA, Pare D. Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Change Biol, 2010, 16: 439-453.

[72]

Lagerlöf J, Andrén O. Abundance and activity of Collembola, Protura, and Diplura (Insecta, Apterygota) in four cropping systems. Pedobiologia, 1991, 35: 337-350.

[73]

Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623-1627.

[74]

Laurance WF, Sayer J, Cassman KG. Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol, 2014, 29: 107-116.

[75]

Law BE, Hudiburg TW, Berner LT, Kent JJ, Buotte PC, Harmon ME. Land use strategies to mitigate climate change in carbon dense temperate forests. Proc Natl Acad Sci USA, 2018, 115: 3663-3668.

[76]

Lawson SS, Michler CH. Afforestation, restoration and regeneration—not all trees are created equal. J For Res, 2014, 25: 3-20.

[77]

Lazzaro L, Mazza G, d'Errico G, Fabiani A, Giuliani C, Inghilesi AF, Lagomarsino A, Landi S, Lastrucci L, Pastorelli R, Roversi PF, Torrini G, Tricarico E, Foggi B. How ecosystems change following invasion by Robinia pseudoacacia: insights from soil chemical properties and soil microbial, nematode, microarthropod and plant communities. Sci Total Environ, 2018, 622–623: 1509-1518.

[78]

Legendre P, Legendre L. Numerical ecology, 2012 3 English Amsterdam: Elsevier 1006

[79]

Li DZ, Niu SL, Luo YQ. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol, 2012, 195: 172-181.

[80]

Lindenmayer DB, Hobbs RJ. Fauna conservation in Australian plantation forests—a review. Biol Conserv, 2004, 119: 151-168.

[81]

Liu Q, Yin H, Cheng X, Lin B, Hu R, Zhao C, Yin C. Problems and strategies of sustainable regeneration of plantation ecosystem in China. World For Res, 2010, 23: 71-75.

[82]

Liu M, Han G, Zhang Q. Effects of agricultural abandonment on soil aggregation, soil organic carbon storage and stabilization: Results from observation in a small karst catchment. Southwest China Agr Ecosyst Environ, 2020, 288: 106719.

[83]

Lupwayi NZ, Clayton GW, O’Donovan JT, Harker KN, Turkington TK, Soon YK. Phosphorus release during decomposition of crop residues under conventional and zero tillage. Soil Till Res, 2007, 95: 231-239.

[84]

Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J. Old-growth forests as global carbon sinks. Nature, 2008, 455: 213.

[85]

Ma C, Yin X, Xu H, Tao Y. Responses of soil Collembolans to vegetation restoration in temperate coniferous and broad-leaved mixed forests. J For Res, 2020, 31(6): 2333-2345.

[86]

Mackey B, Prentice IC, Steffen W, House JI, Lindenmayer D, Keith H, Berry S. Untangling the confusion around land carbon science and climate change mitigation policy. Nat Clim Change, 2013, 3: 552.

[87]

McLauchlan KK, Hobbie SE, Post WM. Conversion from agriculture to grassland builds soil organic matter on decadal timescales. Ecol Appl, 2006, 16: 143-153.

[88]

McNaughton SJ. Relationship among functional properties of California grassland. Nature, 1967, 216: 168-169.

[89]

Menta C, Conti FD, Pinto S, Bodini A. Soil biological quality index (QBS-ar): 15 years of application at global scale. Ecol Ind, 2018, 85: 773-780.

[90]

MSZ 20135. Determination of the soluble nutrient element content of the soil, 1999, Budapest: Hungarian Standards Institution 12 In Hungarian

[91]

Munteanu C, Kuemmerle T, Boltiziar M, Butsic V, Gimmi U, Halada L, Kaim D, Király G, Konkoly-Gyúró É, Kozak J, Lieskovský J, Mojses M, Müller D, Ostafin K, Ostapowicz K, Shandra O, Stych P, Walker S, Radeloff VC. Forest and agricultural land change in the Carpathian region—a meta-analysis of long-term patterns and drivers of change. Land Use Policy, 2014, 38: 685-697.

[92]

Muturi JJ, Mbugi JP, Mueke JM, Lagerlóf J, Mungatu JK, Nyamasyo D, Gikungu M. Collembola density and diversity along a gradient of land-use types in Embu district, Eastern Kenya. Trop Subtrop Agroecosyst, 2009, 11: 361-369.

[93]

Ojala R, Huhta V. Dispersal of microarthropods in forest soil. Pedobiologia, 2001, 45: 443-450.

[94]

Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala S, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. A large and persistent carbon sink in the world’s forests. Science, 2011, 333: 988-993.

[95]

Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK. Change in soil carbon following afforestation. Forest Ecol Manag, 2002, 168: 241-257.

[96]

Paul D, Nongmaithem A, Jha LK. Collembolan density and diversity in a forest and an agroecosystem. Open J Soil Sci, 2011, 1: 54-60.

[97]

Paul KI, Cunningham SC, England JR, Roxburgh SH, Preece ND, Lewis T, Brooksbank K, Crawford DF, Polglase PJ. Managing reforestation to sequester carbon, increase biodiversity potential and minimize loss of agricultural land. Land Use Policy, 2016, 51: 135-149.

[98]

Pawson SM, Brin A, Brockerhoff EG, Lamb D, Payn TW, Paquette A, Parrotta JA. Plantation forests, climate change and biodiversity. Biodivers Conserv, 2013, 22: 1203-1227.

[99]

Peng SS, Piao S, Zeng Z, Ciais P, Zhou L, Li LZX, Myneni RB, Yin Y, Zeng H. Afforestation in China cools local land surface temperature. P Natl Acad Sci Usa, 2014, 111: 2915-2919.

[100]

Pielou EC. The measurement of diversity in different types of biological collections. J Theor Biol, 1966, 13: 131-144.

[101]

Ponge JF. Biocenoses of Collembola in atlantic temperate grass-woodland ecosystems. Pedobiologia, 1993, 37: 223-244.

[102]

Ponge J-F, Gillet S, Dubs F, Fedoroff E, Haese L, Sousa JP, Lavelle P. Collembolan communities as bioindicators of land use intensification. Soil Biol Biochem, 2003, 35: 813-826.

[103]

Ponge J-F, Dubs F, Gillet S, Sousa JP, Lavelle P. Decreased biodiversity in soil springtail communities: the importance of dispersal and landuse history in heterogeneous landscapes. Soil Biol Biochem, 2006, 38: 1158-1161.

[104]

Poschlod P, Bakker JP, Kahmen S. Changing land use and its impact on biodiversity. Basic Appl Ecol, 2005, 6(2): 93-98.

[105]

Potapov AM, Goncharov AA, Semenina EE, Korotkevich AY, Tsurikov SM, Rozanova OL, Anichkin AE, Zuev AG, Samoylova ES, Semenyuk II, Yevdokimov IV, Tiunov AV. Arthropods in the subsoil: abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. Eur J Soil Biol, 2017, 82: 88-97.

[106]

Rahmonov O. The chemical composition of plant litter of black locust (Robinia pseudoacacia L.) and its ecological role in sandy ecosystems. Acta Ecol Sin, 2009, 29: 237-243.

[107]

Ritter E, Vesterdal L, Gundersen P. Changes in soil properties after afforestation of former intensively managed soils with oak and Norway spruce. Plant Soil, 2003, 249: 319-330.

[108]

Rogelj J, Meinshausen M, Knutti R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Change, 2012, 2: 248.

[109]

Rogelj J, Popp A, Calvin KV, Luderer G, Emmerling J, Gernaat D, Fujimori S, Strefler J, Hasegawa T, Marangoni G, Krey V, Kriegler E, Riahi K, Vuuren DP, Doelman J, Drouet L, Edmonds J, Fricko O, Harmsen N, Havlík P, Humpenöder F, Stehfest E, Tavoni M. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat Clim Change, 2018, 8: 325.

[110]

Salmon S, Ponge JF. Responses to light in a soil-dwelling springtail. Eur J Soil Biol, 1998, 34: 199-201.

[111]

Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE. Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478: 49-56.

[112]

Shaifullah KM, Mezbahuddin M, Sujauddin M, Haque SMS. Effects of coastal afforestation on some soil properties in Lakshmipur coast of Bangladesh. J For Res, 2008, 19: 32-36.

[113]

Shaifullah KM, Sirajul Haque SM, Sujauddin M, Karmakar S. Coastal afforestation effects on soil properties at Hatiya in Bangladesh. J For Res, 2009, 20: 243-248.

[114]

Shannon CE, Weaver W. The mathematical theory of communication, 1949, Urbana: University of Illionis Press 117

[115]

Sjögren M. Dispersal rates of Collembola in metal polluted soil. Pedobiologia, 1997, 41: 506-513.

[116]

Song G, Li L, Pan G, Zhang Q. Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry, 2005, 74: 47-62.

[117]

Sousa JP, Da Gama MM, Pinto C, Keating A, Calhôa F, Lemos M, Castro C, Luz T, Leitão P, Dias S. Effects of land-use on Collembola diversity patterns in a Mediterranean landscape. Pedobiologia, 2004, 48: 609-622.

[118]

Sousa JP, Bolger T, Da Gama MM, Lukkari T, Ponge J-F, Simón C, Traser G, Vanbergen AJ, Brennan A, Dubs F, Ivitis E, Keating A, Stofer S, Watt AD. Changes in Collembola richness and diversity along a gradient of land-use intensity: a pan European study. Pedobiologia, 2006, 50: 147-156.

[119]

Stomp N. Contribution à l'étude des Pseudosinella endogés. Espèces européennes de Pseudosinella à 5+5 yeux (Collembola, Entomobryidae). Rev Ecol Biol Sol, 1971, 1: 173-178.

[120]

ter Braak CJF, Šmilauer P. CANOCO reference manual and Canodraw for windows user’s guide: software for canonical community ordination (version 4.5), 2002, Ithaca: Microcomputer Power 500

[121]

Tews J, Brose U, Grimm V, Tielborger K, Wichmann MC, Schwager M, Jeltsch F. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr, 2004, 31: 79-92.

[122]

Torralba M, Fagerholm N, Burgess PJ, Moreno G, Plieninger T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agr Ecosyst Environ, 2016, 230: 150-161.

[123]

Tóthmérész B. Diversity orderings, 1997, Budapest: Scientia 98 In Hungarian

[124]

Trojan P, Bańkowska R, Chudzicka E, Pilipiuk L, Skibińska E, Sterzyńska M, Wytwer J. Secondary succession of fauna in the pine forests of Puszcza Białowieska. Fragmenta Faun, 1994, 37: 3-104.

[125]

Tsiafouli MA, Thébault E, Sgardelis SP, de Ruiter PC, van der Putten WH, Birkhofer K, Hemerik L, de Vries FT, Bardgett RD, Brady MD, Bjornlund L, Jørgensen HB, Christensen S, Hertefeldt TD, Hotes S, Hol WHG, Frouz J, Liiri M, Mortimer SR, Setälä H, Tzanopoulos J, Uteseny K, Pižl V, Starý J, Wolters V, Hedlund K. Intensive agriculture reduces soil biodiversity across Europe. Glob Change Biol, 2015, 21: 973-985.

[126]

Twardowski JP, Hurej M, Gruss I. Diversity and abundance of springtails (Hexapoda: Collembola) in soil under 90-year potato monoculture in relation to crop rotation. Arch Agron Soil Sci, 2016, 62: 1158-1168.

[127]

Tyurin IV. A new modification of the volumetric method of determining soil organic matter by means of cromic acid. Pochvovedenie, 1931, 26: 36-47.

[128]

Van Straalen NM. Evaluation of bioindicator systems derived from soil arthropod communities. Appl Soil Ecol, 1998, 9: 429-437.

[129]

Van Straalen NM, Verhoef HA. The development of a bioindicator system for soil acidity based on arthropod pH preferences. J Appl Ecol, 1997, 34: 217-232.

[130]

Vanbergen AJ, Watt AD, Mitchell R, Truscott AM, Palmer SCF, Ivits E, Eggleton P, Jones TH, Sousa JP. Scale-specific correlations between habitat heterogeneity and soil fauna diversity along a landscape structure gradient. Oecologia, 2007, 153: 713-725.

[131]

Vanhée B, Devigne C. Differences in Collembola species assemblages (Arthropoda) between spoil tips and surrounding environments are dependent on vegetation development. Sci Rep, 2018, 8: 18067.

[132]

Varamesh S, Hosseini SM, Behjou FK, Fataei E. The impact of land afforestation on carbon stocks surrounding Tehran. Iran J For Res, 2014, 25: 135-141.

[133]

Vesterdal L, Ritter E, Gundersen P. Change in soil organic carbon following afforestation of former arable land. Forest Ecol Manag, 2002, 169: 137-147.

[134]

Wachira P, Kimenju J, Okoth S, Kiarie J. Kaneko N, Yoshiura S, Kobayashi M. Conservation and sustainable management of soil biodiversity for agricultural productivity. Sustainable living with environmental risks, 2014, Tokyo: Springer 27 34

[135]

Young J, Watt A, Nowicki P, Alard D, Clitherow J, Henle K, Johnson R, Laczko E, McCracken D, Matouch S, Niemela J, Richards C. Towards sustainable land use: Identifying and managing the conflicts between human activities and biodiversity conservation in Europe. Biodivers Conserv, 2005, 14: 1641-1661.

[136]

Zeppelini D, Bellini BC, Creão-Duarte AJ, Hernández MIM. Collembola as bioindicators of restoration in mined sand dunes of Northeastern Brazil. Biodivers Conserv, 2009, 18: 1161-1170.

[137]

Zhao J, Shao Y, Wang X, Neher DA, Xu G, Li Z, Fu S. Sentinel soil invertebrate taxa as bioindicators for forest management practices. Ecol Ind, 2013, 24: 236-239.

Funding

University of Sopron

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/