Growth and chemical composition of silver birch: Comparative study between Lithuania and Romania

Valda Araminienė , Lucian Dinca , Iveta Varnagirytė–Kabašinskiene , Raluca Enescu , Vlad Crisan , Vidas Stakėnas

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (5) : 2111 -2120.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (5) : 2111 -2120. DOI: 10.1007/s11676-020-01231-6
Original Paper

Growth and chemical composition of silver birch: Comparative study between Lithuania and Romania

Author information +
History +
PDF

Abstract

The effects of different climatic conditions on growth and chemical composition of Betula pendula in geographically different European regions, Lithuania and Romania, were compared. Birch species in the entire area have a wide natural distribution, but B. pendula is commercially more important in Lithuania than in Romania. Here we evaluated tree ring width, wood density and foliar chemical composition of mature birch trees in two European regions. Trees at the Lithuanian sites had greater radial growth and wood density with no clear changes in foliar chemistry than those at the Romanian sites. Mean wood density was 600–700 kg m−3 at Lithuanian and 350–450 kg m−3 at Romanian sites. Mean width of wood ring, earlywood and latewood for Lithuanian birch trees were several times higher than the means for Romanian birch trees. We hypothesized that the main differences in birch radial growth and wood density were due to the different climatic conditions in the studied regions. Ca, K and Mg concentrations were significantly higher and Fe and Mn were lower in the birch foliage at the Lithuanian sites compared those at the Romanian sites. Overall assessment of growth showed that silver birch cultivation is more appropriate for colder climate regions and that birch growth may change in the context of a warming climate.

Keywords

Betula pendula / Ring width / Ood density / Foliage chemistry

Cite this article

Download citation ▾
Valda Araminienė, Lucian Dinca, Iveta Varnagirytė–Kabašinskiene, Raluca Enescu, Vlad Crisan, Vidas Stakėnas. Growth and chemical composition of silver birch: Comparative study between Lithuania and Romania. Journal of Forestry Research, 2020, 32(5): 2111-2120 DOI:10.1007/s11676-020-01231-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aerts R. Climate, leaf litter chemistry, and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 1997, 79: 439-449.

[2]

Alexe A. Criterii practice de apreciere a nutriției cu azot a plantelor forestiere. Revista Pădurilor, 1991, 106(4): 173-177.

[3]

Anjum S, Xie X, Wang L. Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res, 2011, 6: 2026-2032.

[4]

Aosaar J, Mander Ü, Varik M, Becker H, Morozov G, Maddison M, Uri V. Biomass production and nitrogen balance of naturally afforested silver birch (Betula pendula Roth) stand in Estonia. Silva Fenn, 2016 50 4 19

[5]

Araminienė V, Sicard P, Anav A, Agathokleous E, Stakėnas V, De Marco A, Varnagirytė-Kabašinskienė I, Paoletti E, Girgždienė R. Trends and inter-relationships of ground-level ozone metrics and forest health in Lithuania. Sci Total Environ, 2019, 658: 1265-1277.

[6]

Araminiene V, Varnagiryte-Kabasinskiene I, Stakenas V. Pilot study on the elevated air temperature and CO2 effects on the artificially defoliated silver birch saplings. J For Res, 2018, 29(6): 1507-1518.

[7]

Beck P, Caudullo G, de Rigo D, Tinner W (2016) Betula pendula, Betula pubescens and other birches in Europe: distribution, habitat, usage and threats. In: Sa-Miguel-Ayanz J, de Rigo D, Caudullo G, Durrant TH, Mauri A (eds) European Atlas of Forest Tree Species 2985 Publications Office of the EU, 2 Rue Mercier, pp.70–73

[8]

Beedlow PA, Lee E, Tingey DT, Waschmann RS, Burdick CA. The importance of seasonal temperature and moisture patterns on growth of Douglas-fir in western Oregon, USA. Agric For Meteorol, 2013, 169: 174-185.

[9]

Benjamin JG, Nielsen DC. Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crop Res, 2006, 97: 248-253.

[10]

Bhat KM. Variation in structure and selected properties of Finnish birch wood. I. Interrelationships of some structural features, basic density and shrinkage. Silva Fenn, 1980, 14(4): 384-396.

[11]

Blois JL, Williams JW, Fitzpatrick MC, Jackson ST, Ferrier S. Space can substitute for time in predicting climate change effects on biodiversity. P Natl Acad Sci USA, 2013, 110: 9374-9379.

[12]

Couture JJ, Meehan TD, Lindroth RL. Atmospheric change alters foliar quality of host trees and performance of two outbreak insect species. Oecologia, 2012, 168: 863-876.

[13]

Currano ED, Wilf P, Wing SL, Labandeira CC, Lovelock EC, Royer DL. Sharply increased insect herbivory during the Paleocene-Eocene Thermal Maximum. Proc Natl Acad Sci USA, 2008, 105: 1960-1964.

[14]

FAO (2020) Information at the website of the Food and Agriculture Organization. Available online https://www.fao.org.

[15]

Jaakola L, Hohtola A. Effect of latitude on flavonoid biosynthesis in plants. Plant Cell Environ, 2010, 33(8): 1239-1247.

[16]

IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No 106, 2015, Rome: FAO.

[17]

Feurdean A (2004) Palaeoenvironment in north-western Romania during the last 15000 years. PhD Thesis Stokholm University, Sweden, p 44

[18]

Grimm NB, Chapin FS III, Bierwagen B, Gonzalez P, Groffman PM, Luo Y, Melton F, Nadelhoffer K, Pairis A, Raymond PA, Schimel J, Williamson CE. The impacts of climate change on ecosystem structure and function. Front Ecol Environ, 2013, 11(9): 474-482.

[19]

Helińska-Raczkowska L. Zmienność wilgotności i gęstości drewna w świeżo ściętych pniach brzozy (Betula pendula Roth.). [Wood moisture content and density variation in the freshly cut birch (Betula pendula Roth.) stem]. Folia For Pol Ser B, 1996, 27: 23-30.

[20]

Henttonen HM, Mäkinen H, Heiskanen J, Peltoniemi M, Laurén A, Hordo M. Response of radial increment variation of Scots pine to temperature, precipitation and soil water content along a latitudinal gradient across Finland and Estonia. Agr Forest Meteorol, 2014, 198–199: 294-308.

[21]

Heräjärvi H (2002) Properties of birch (Betula pendula, B. pubescens) for sawmilling and further processing in Finland. Metsäntutkimuslaitos, Academic dissertation, University of Joensuu. Finnish Forest Research Institute, Research Papers 871: 52

[22]

Heräjärvi H. Variation of basic density and Brinell hardness within mature Finnish Betula pendula and B. pubescens stems. Wood Fiber Sci, 2004, 36(2): 216-227.

[23]

Jobbágy EG, Jackson RB. Global controls of forest line elevation in the northern and southern hemispheres. Global Ecol Biogeogr, 2000, 9: 253-268.

[24]

Jump AS, Mátyás C, Peñuelas J. The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol, 2009, 24: 694-701.

[25]

Lachowicz H. Wybrane wskaźniki jakości technicznej drewna brzozy brodawkowatej (Betula pendula Roth.) w północno-wschodniej Polsce [Selected indicators of technical quality of silver birch (Betula pendula Roth) wood in north-eastern Poland]. Leśne Prace Badawcze, 2010, 71(2): 135-147.

[26]

Lachowicz H (2015). Wieloczynnikowa analiza zmienności wybranych właściwości strukturalnych, fizycznych i mechanicznych drewna brzozy brodawkowatej (Betula pendula Roth.). [Multivariate analysis of the variation of structural, physical and mechanical properties of silver birch (Betula pendula Roth.) wood]. Rozprawy Naukowe i Monografie. Wydawnictwo SGGW, Warszawa. 61(201): 153.

[27]

Lachowicz H, Bieniasz A, Wojtan R. Variability in the basic density of silver birch wood in Poland. Silva Fenn, 2019 53 1 13

[28]

Liang P, Wang X, Sun H, Fan Y, Wu Y, Lin X, Chang J. Forest type and height are important in shaping the altitudinal change of radial growth response to climate change. Sci Rep, 2019, 9: 1336.

[29]

Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van der Maaten E, Schelhaas M, Lasch P, Eggers J, van der Maaten-Theunissen M, Suckow F, Psomas A, Pouler B, Hanewinkel M. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management. J Environ Manage, 2014, 146: 69-83.

[30]

Liu L, King JS, Giardina CP, Booker FL. The influence of chemistry, production and community composition on leaf litter decomposition under elevated atmospheric CO2 and tropospheric O3 in a northern hardwood ecosystem. Ecosystems, 2009, 12: 401-416.

[31]

Loehle C, Idso C, Wigley BT. Physiological and ecological factors influencing recent trends in United States forest health responses to climate change. Forest Ecol Manag, 2016, 363: 179-189.

[32]

Lyu L, Suvanto S, Nöjd P, Henttonen HM, Mäkinen H, Zhang Q. Tree growth and its climate signal along latitudinal and altitudinal gradients: comparison of tree rings between Finland and the Tibetan Plateau. Biogeosciences, 2017, 14: 3083-3095.

[33]

Mäkinen H, Nöjd P, Kahle HP, Neumann U, Tveite B, Mielikäinen K, Röhle H, Spiecker H. Large-scale climatic variability and radial increment variation of Picea abies (L.) Karst. in central and northern Europe. Trees, 2003, 17: 173-184.

[34]

Mantau U (2012) Wood flows in Europe (EU27). Project report, Celle, p 24 https://www.unece.org/fileadmin/DAM/timber/meetings/20150311/Wood_flows_in_Europe_Mantau.pdf

[35]

Martz F, Peltola R, Fontanay S, Duval RE, Julkunen-Tiitto R, Stark S. Effect of latitude and altitude on the terpenoid and soluble phenolic composition of juniper (Juniperus communis) needles and evaluation of their antibacterial activity in the boreal zone. J Agric Food Chem, 2009, 57(20): 9575-9584.

[36]

Mateescu E (2016) The Romanian agrometeorological services and products -current status and challenges in the context of climate change. National Meteorological Administration of Romania. Workshop Agrometeorologists for farmers in hotter, drier, wetter future, Proceedings, 9-10 November 2016, Ljubljana, Slovenia

[37]

Messaoud Y, Chen HYH. The influence of recent climate change on tree height growth differs with species and spatial environment. PLoS One, 2011 6 2 e14691

[38]

Möttönen V, Luostarinen K. Variation in density and shrinkage of birch (Betula pendula Roth) timber from plantations and naturally regenerated forests. Forest Prod J, 2006, 56(1): 34-39.

[39]

Norby RJ, Luo Y. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol, 2004, 162: 281-293.

[40]

Oksanen E, Riikonen J, Kaakinen S, Holopainen T, Vapaavuori E. Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone. Glob Chang Biol, 2005, 11(5): 732-748.

[41]

Papp N, Czégényi D, Hegedűs A, Morschhauser T, Quave CL, Cianfaglione K, Pieroni A. The uses of Betula pendula Roth among Hungarian Csángós and Székelys in Transylvania. Romania Acta Soc Bot Pol, 2014, 83(2): 113-122.

[42]

Praba ML, Cairns JE, Babu RC, Lafitte HR. Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J Agron Crop Sci, 2009, 195: 30-46.

[43]

Pradhan DK, Cahalan C, Ulak S. Effects of predicted reduced summer rainfall on growth and development of Silver birch (Betula Pendula Roth) and Downy birch (Betula pubescens Ehrh). Forestry: Journal of Institute of Forestry. Nepal, 2018, 15: 28-44.

[44]

Rennenberg H, Loreto F, Polle A, Brilli F, Fares S, Beniwal RS, Gessler A. Physiological responses of forest trees to heat and drought. Plant Biol, 2006, 8: 556-571.

[45]

Rubio-Cuadrado A, Camarero JJ, Del Río M, Sánchez-González M, Ruiz-Peinado R, Bravo-Oviedo A, Gil L, Montes F. Drought modifies tree competitiveness in an oak-beech temperate forest. For Ecol Manag, 2018, 429: 7-17.

[46]

Scharnweber T, Manthey M, Criegee Ch, Bauwe A, Schröder Ch, Wilmking M. Drought matters – Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. For Ecol Manag, 2011, 262: 947-961.

[47]

Schinker MG, Hansen N, Spiecker H. High-Frequency Densitometry-A New Method for the Rapid Evaluation of Wood Density Variations. IAWA J, 2003, 24(3): 231-239.

[48]

Stark S, Julkunen-Tiitto R, Holappa E, Mikkola K, Nikula A. Concentrations of foliar quercetin in natural populations of White birch (Betula pubescens) increase with latitude. J Chem Ecol, 2008, 34: 1382-1391.

[49]

State Forest Service (2017) Lithuanian statistical yearbook of forestry. In: Butkus A, Dumčiene V, Eigirdas M, Kuliešis A, Vižlenskas D, 2017, Kaunas Lithuania: Lututė Publishing House(in Lithuania) 184

[50]

Suseela V, Tharayil N, Xing B, Dukes JS. Labile compounds in plant litter reduce the sensitivity of decomposition to warming and altered precipitation. New Phytol, 2013, 200: 122-133.

[51]

Suseela V, Tharayil N, Xing B, Dukes JS. Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra. Glob Chang Biol, 2015, 21: 4177-4195.

[52]

Sofletea N, Curtu AL. Dendrologie, 2007, Brasov: Transilvania University Publishing House (in Romanian)

[53]

Top SM, Filley TR. Effects of elevated CO2 on the extractable amino acids of leaf litter and fine roots. New Phytol, 2014, 202: 1257-1266.

[54]

Verkasalo E, Heräjärvi H, Arponen J, Toppinen A (2007) Perspectives of wood resources, industry competitiveness and wood product markets for birch industries in the Baltic Sea area. In: ISCHP ’07 International Scientific Conference on Hardwood Processing, September 24–25–26, Quebec City, Canada: Proceedings, p. 29–35.

[55]

Viherä-Aarnio A, Velling P. Growth, wood density and bark thickness of silver birch originating from the Baltic countries and Finland in two Finnish provenance trials. Silva Fenn, 2017 51 4 7731

[56]

Weih M, Karlsson PS. Growth response of Mountain birch to air and soil temperature: is increasing leaf-nitrogen content an acclimation to lower air temperature?. New Phytol, 2002, 150(1): 147-155.

[57]

Wohlgemuth T. Climate change and tree responses in Central European forests. Ann For Sci, 2015, 72: 285-287.

AI Summary AI Mindmap
PDF

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/