Trends in tropospheric ozone concentrations and forest impact metrics in Europe over the time period 2000–2014

Chiara Proietti , Maria Francesca Fornasier , Pierre Sicard , Alessandro Anav , Elena Paoletti , Alessandra De Marco

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (2) : 543 -551.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (2) : 543 -551. DOI: 10.1007/s11676-020-01226-3
Original Paper

Trends in tropospheric ozone concentrations and forest impact metrics in Europe over the time period 2000–2014

Author information +
History +
PDF

Abstract

In Europe, tropospheric ozone pollution appears as a major air quality issue, and ozone concentrations remain potentially harmful to vegetation. In this study we compared the trends of two ozone metrics widely used for forests protection in Europe, the AOT40 (Accumulated Ozone over Threshold of 40 ppb) which only depends on surface air ozone concentrations, and the Phytotoxic Ozone Dose which is the accumulated ozone uptake through stomata over the growing season, and above a threshold Y of uptake (PODY). By using a chemistry transport model, we found that European-averaged ground-level ozone concentrations (− 2%) and AOT40 metric (− 26.5%) significantly declined from 2000 to 2014, due to successful control strategies to reduce the emission of ozone precursors in Europe since the early 1990s. In contrast, the stomatal ozone uptake by forests increased from 17.5 to 26.6 mmol O3 m−2 despite the reduction in ozone concentrations, leading to an increase of potential ozone damage on plants in Europe. In a climate change context, a biologically-sound stomatal flux-based standard (PODY) as new European legislative standard is needed.

Keywords

Tropospheric ozone / AOT40 / POD / Trendm / Mann–Kendall test

Cite this article

Download citation ▾
Chiara Proietti, Maria Francesca Fornasier, Pierre Sicard, Alessandro Anav, Elena Paoletti, Alessandra De Marco. Trends in tropospheric ozone concentrations and forest impact metrics in Europe over the time period 2000–2014. Journal of Forestry Research, 2020, 32(2): 543-551 DOI:10.1007/s11676-020-01226-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agathokleous E, Kitao M, Kinose Y. A review study on ozone phytotoxicity metrics for setting critical levels in Asia. Asian J Atmos Environ, 2018, 12: 1-16.

[2]

Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD. The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol, 2012, 63: 637-661.

[3]

Anav A, Menut L, Khvorostyanov D, Viovy N. Impact of tropospheric ozone on the Euro-Mediterranean vegetation. Glob Change Biol, 2011, 17: 2342-2359.

[4]

Anav A, De Marco A, Proietti C, Alessandri A, Dell'Aquila A, Cionni I, Friedlingstein P, Khvorostyanov D, Menut L, Paoletti E, Sicard P, Sitch S, Vitale M. Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. Glob Change Biol, 2016, 22: 1608-1627.

[5]

Anav A, De Marco A, Friedlingstein P, Savi F, Sicard P, Sitch S, Vitale M, Paoletti E. Growing season extension affects ozone uptake by European forests. Sci Total Environ, 2019, 669: 1043-1052.

[6]

Araminienė V, Sicard P, Anav A, Agathokleous E, Stakėnas V, De Marco A, Varnagirytė-Kabašinskienė I, Paoletti E, Girgždienė R. Trends and inter-relationships of ground-level ozone metrics and forest health in Lithuania. Sci Total Environ, 2019, 658: 1265-1277.

[7]

Brus DJ, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ, Gunia K. Statistical mapping of tree species over Europe. Eur J For Res, 2011, 131: 145-157.

[8]

Cailleret M, Ferretti M, Gessler A, Rigling A, Schaub M. Ozone effects on European forest growth-towards an integrative approach. J Ecol, 2018, 106: 1377-1389.

[9]

CLRTAP (2017) Mapping critical loads for ecosystems, Chapter V of Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends

[10]

Chameides WL, Lindsay RW, Richardson J, Kiang CS. The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science, 1988, 241: 1473-1475.

[11]

Colette A, Solberg S, Beauchamp M, Bessagnet B, Mal-herbe L, Guerreiro C. Long term air quality trendsin Europe: contribution of meteorological variability, natu-ral factors and emissions, 2017, Bilthoven: ETC/ACM.

[12]

Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, Galbally IE, Gilge S, Horowitz L, Jensen NR, Lamarque JF, Naik V, Oltmans SJ, Schwab J, Shindell DT, Thompson AM, Thouret V, Wang Y, Zbinden RM. Global distribution and trends of tropospheric ozone: an observation-based review. Elementa, 2014, 2: 29.

[13]

De Leeuw F. Trends in ground level ozone concentrations in the European Union. Environ Sci Policy, 2000, 3: 189-199.

[14]

De Marco A, Sicard P. Why do we still need to derive ozone critical levels for vegetation protection. Int J Environ Sci Nat Resour, 2019, 21: 164-166.

[15]

De Marco A, Sicard P, Vitale M, Carriero G, Renou C, Paoletti E. Metrics of ozone risk assessment for Southern European forests: testing the potential of canopy moisture content as plant response indicator. Atmos Environ, 2015, 120: 182-190.

[16]

EPA (2007) Review of the National Ambient Air Quality Standards for Ozone: Policy Assessment of Scientific and Technical Information. OAQPS Staff Paper. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, Durham NC. Publication No. EPA-452/R-07-003

[17]

EEA (2018) European Environment Agency: Air quality in Europe. 2018 report. ISBN 978-92-9213-989-6. https://doi.org/10.2800/777411.

[18]

Fares S, Vargas R, Detto M, Goldstein AH, Karlik J, Paoletti E, Vitale M. Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements. Glob Change Biol, 2013, 19: 2427-2443.

[19]

Fu YSH, Piao SL, Delpierre N, Hao FH, Hänninen H, Liu YJ, Sun WC, Janssens IA, Campioli M. Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Glob Change Biol, 2017, 24: 2159-2168.

[20]

Guerreiro CBB, Foltescu V, de Leeuw F. Air quality status and trends in Europe. Atmos Environ, 2014, 98: 376-384.

[21]

Hoshika Y, Katata G, Deushi M, Watanabe M, Koike T, Paoletti E. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. Sci Rep, 2015, 5: 9871.

[22]

Jarvis PG. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond B, 1976, 273: 593-610.

[23]

Karlsson PE, Klingberg J, Engardt M, Andersson C, Langner J, Karlsson GP, Pleijel H. Past, present and future concentrations of ground-level ozone and potential impacts on ecosystems and human health in northern Europe. Sci Total Environ, 2017, 576: 22-35.

[24]

Klingberg J, Engardt M, Karlsson PE, Langner J, Pleijel H. Declining ozone exposure of European vegetation under climate change and reduced precursor emissions. Biogeosciences, 2014, 11: 5269-5283.

[25]

Liu Q, Fu YSH, Zeng ZZ, Huang MT, Li XR, Piao SL. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob Change Biol, 2016, 22: 644-655.

[26]

Liu Q, Fu YSH, Zhu ZC, Liu YW, Liu Z, Huang MT, Janssens IA, Piao SL. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob Change Biol, 2016, 22: 3702-3711.

[27]

Martin F, Fileni L, Palomino I, Vivanco MG, Garrido JL. Analysis of the spatial representativeness of rural background monitoring stations in Spain. Atmos Pollut Res, 2014, 5: 779-788.

[28]

Menut L, Bessagnet B, Khvorostiyanov D, Beekmann M, Blond N, Colette A, Coll I, Curci G, Foret G, Hodzic A, Mailler S, Meleux F, Monge JL, Pison I, Siour G, Turquety S, Valari M, Vautard R, Vivanco MG. CHIMERE 2013: a model for regional atmospheric composition modelling. Geosci Model Dev, 2013, 6: 981-1028.

[29]

Mickley LJ, Jacob DL, Rind D. Uncertainty in preindustrial abundance of tropospheric ozone: implications for radiative forcing calculations. J Geophys Res, 2001, 106: 3389-3399.

[30]

Millán MM, Mantilla E, Salvador R, Carratalá A, Sanz MJ, Alonso L, Gangoiti G, Navazo M. Ozone cycles in the Western Mediterranean basin: interpretation of monitoring data in complex coastal terrain. J Appl Meteorol, 2000, 39: 487-508.

[31]

Mills G, Pleijel H, Braun S, Buker P, Bermejo V, Calvo E, Danielsson H, Emberson L, Fernandez IG, Grunhage L, Harmens H, Hayes F, Karlsson PE, Simpson D. New stomatal flux-based critical levels for ozone effects on vegetation. Atmos Environ, 2011, 45: 5064-5068.

[32]

Mills G, Sharps K, Simpson D, Pleijel H, Broberg M, Uddling J, Jaramillo F, Davies WJ, Dentener F, Van den Berg M, Agrawal M, Agrawal SB, Ainsworth EA, Buker P, Emberson L, Feng ZZ, Harmens H, Hayes F, Kobayashi K, Paoletti E, Van Dingenen R. Ozone pollution will compromise efforts to increase global wheat production. Glob Change Biol, 2018, 24(8): 3560-3574.

[33]

Monks PS, Archibald AT, Colette A, Cooper O, Coyle M, Derwent R, Fowler D, Granier C, Law KS, Mills GE, Stevenson DS, Tarasova O, Thouret V, von Schneidemesser E, Sommariva R, Wild O, Williams M. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos Chem Phys, 2015, 15: 8889-8973.

[34]

Musselman RC, Lefohn AS, Massman WJ, Heath RL. A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. Atmos Environ, 2006, 40: 1869-1888.

[35]

Paoletti E, Alivernini A, Anav A, Badea O, Carrari E, Chivulescu S, Conte A, Ciriani ML, Dalstein-Richier L, De Marco A, Fares S, Fasano G, Giovannelli A, Lazzara M, Leca S, Materassi S, Moretti V, Pitar D, Popa I, Sabatini F, Salvati L, Sicard P, Sorgi T, Hoshika Y. Toward stomatal-flux based forest protection against ozone: the MOTTLES approach. Sci Total Environ, 2019, 691: 516-527.

[36]

Paoletti E. Impact of ozone on Mediterranean forests: a review. Environ Pollut, 2006, 144: 463-474.

[37]

Paoletti E, Manning WJ. Toward a biologically significant and usable standard for ozone that will also protect plants. Environ Pollut, 2007, 150: 85-95.

[38]

Proietti C, Anav A, DeMarco A, Sicard P, Vitale M. A multi-sites analysis on the ozone effects on gross primary production of European forests. Sci Total Environ, 2016, 556: 1-11.

[39]

Ronan AC, Ducker JA, Schnell JL, Holmes CD. Have improvements in ozone air quality reduced ozone uptake into plants?. Elem Sci Anth, 2020, 8: 2.

[40]

Sanz MJ, Calatayud V, Calvo E. Spatial pattern of ozone injury in Aleppo pine related to air pollution dynamics in a coastal-mountain region of eastern Spain. Environ Pollut, 2000, 108: 239-247.

[41]

Shindell D, Kuylenstierna JCI, Vignati E, van Dingenen R, Amann M, Klimont Z, Anenberg SC, Muller N, Janssens-Maenhout G, Raes F, Schwartz J, Faluvegi G, Pozzoli L, Kupiainen K, Höglund-Isaksson L, Emberson L, Streets D, Ramanathan V, Hicks K, Oanh NTK, Milly G, Williams M, Demkine V, Fowler D. Simultaneously mitigating near-term climate change and improving human health and food security. Science, 2012, 335: 183-189.

[42]

Sicard P, Coddeville P, Galloo JC. Near-surface ozone levels and trends at rural stations in France over the 1995–2003 period. Environ Monit Assess, 2009, 156: 141-157.

[43]

Sicard P, Thibaudon M, Besancenot JP, Mangin A. Forecast models and trends for the main characteristics of the Olea pollen season in Nice (south-eastern France) over the 1990–2009 period. Grana, 2013, 51: 52-62.

[44]

Sicard P, Serra R, Rossello P. Spatio-temporal trends of surface ozone concentrations and metrics in France. Environ Res, 2016, 149: 122-144.

[45]

Sicard P, Augustaitis A, Belyazid S, Calfapietra C, De Marco A, Fenn M, Grulke N, He S, Matyssek R, Serengil Y, Wieser G, Paoletti E. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems. Environ Pollut, 2016, 213: 977-987.

[46]

Sicard P, De Marco A, Dalstein-Richier L, Tagliaferro F, Paoletti E. An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests. Sci Total Environ, 2016, 541: 729-741.

[47]

Sicard P, Anav A, De Marco A, Paoletti E. Projected global tropospheric ozone impacts on vegetation under different emission and climate scenarios. Atmos Chem Phys, 2017, 17: 12177-12196.

[48]

Sicard P, Agathokleous E, Araminiene V, Carrari E, Hoshika Y, De Marco A, Paoletti E. Should we see urban trees as effective solutions to reduce increasing ozone levels in cities?. Environ Pollut, 2018, 243: 163-176.

[49]

Sicard P, Khaniabadi YO, Perez S, Gualtieri M, De Marco A. Effect of O3, PM10 and PM2.5 on cardiovascular and respiratory diseases in cities of France, Iran and Italy. Environ Sci Pollut Res, 2019, 26: 32645-32665.

[50]

Sicard P, De Marco A, Agathokleous E, Feng ZZ, Xu XB, Paoletti E, Diéguez Rodriguez JJ, Calatayud V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci Total Environ, 2020, 735: 139542.

[51]

Sicard P, Paoletti E, Agathokleous E, Araminienė V, Proietti C, Coulibaly F, De Marco A. Ozone weekend effect in cities: Deep insights for urban air pollution control. Environ Res, 2020, 191: 110193.

[52]

Simon H, Reff A, Wells B, Xing J, Frank N. Ozone trends across the United States over a period of decreasing NOx and VOC emissions. Environ Sci Tech, 2015, 49: 186-195.

[53]

Skamarock W, Klemp JB. A time-split non-hydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys, 2008, 227: 3465-3485.

[54]

UNECE (2010) Mapping critical levels for vegetation. Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends, United Nations Economic Commission for Europe (UNECE) convention on long range transboundary air pollution, Geneva p 254. https://www.icpmapping.org

[55]

UNECE (2011) Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. Convention on long-range transboundary air pollution. https://www.icpmapping.org. Accessed November 2012

[56]

UNECE (2017) Mapping critical levels for vegetation. International cooperative programme on effects of air pollution on natural vegetation and crops, Bangor, UK

[57]

Vestreng V, Ntziachristos L, Semb A, Reis S, Isaksen ISA, Tarrasón L. Evolution of NOx emissions in Europe with focus on road transport control measures. Atmos Chem Phys Discuss, 2008, 8: 10697-10747.

[58]

Wittig VE, Ainsworth EA, Naidu SL, Karnosky DF, Long SP. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Glob Change Biol, 2009, 15: 396-424.

Funding

Ente per le Nuove Tecnologie, l'Energia e l'Ambiente

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/