Wood forming tissue-specific expression of PdSuSy and HCHL increases holocellulose content and improves saccharification in Populus

Yang Zhang , Hua Xu , Yingzhen Kong , Jiawen Hua , Xianfeng Tang , Yamei Zhuang , Yue Bai , Gongke Zhou , Guohua Chai

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (4) : 1681 -1688.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (4) : 1681 -1688. DOI: 10.1007/s11676-020-01220-9
Original Paper

Wood forming tissue-specific expression of PdSuSy and HCHL increases holocellulose content and improves saccharification in Populus

Author information +
History +
PDF

Abstract

Development of strategies to deconstruct lignocellulosic biomass in tree species is essential for biofuels and biomaterials production. We applied a wood forming tissue-specific system in a hybrid poplar to express both PdSuSy (a sucrose synthase gene from Populus deltoides × P. euramericana that has not been functionally characterized) and HCHL (the hydroxycinnamoyl-CoA hydratase-lyase gene from Pseudomonas fluorescens, which inhibits lignin polymerization in Arabidopsis). The PdSuSy-HCHL overexpression poplars correspondingly driven by the promoters of Arabidopsis AtCesA7 and AtC4H resulted in a significant increase in cellulose (> 8%), xylan (> 12%) and glucose (> 29%) content, accompanying a reduction in galacturonic acid (> 36%) content, compared to control plants. The saccharification efficiency of these overexpression poplars was dramatically increased by up to 27%, but total lignin content was unaffected. These transgenic poplars showed inhibited growth characteristics, including > 16% reduced plant height, > 10% reduced number of internodes, and > 18% reduced fresh weight after growth of 4 months, possibly due to relatively low expression of HCHL in secondary xylem. Our results demonstrate the structural complexity and interaction of the cell wall polymers in wood tissue and outline a potential method to increase biomass saccharification in woody species.

Keywords

Saccharification / Biomass / Cell wall composition / Growth / Poplar

Cite this article

Download citation ▾
Yang Zhang, Hua Xu, Yingzhen Kong, Jiawen Hua, Xianfeng Tang, Yamei Zhuang, Yue Bai, Gongke Zhou, Guohua Chai. Wood forming tissue-specific expression of PdSuSy and HCHL increases holocellulose content and improves saccharification in Populus. Journal of Forestry Research, 2020, 32(4): 1681-1688 DOI:10.1007/s11676-020-01220-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP. A membrane: associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA, 1995, 92(20): 9353-9357.

[2]

Andersson-Gunnerås S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho P, Nilsson MP, Henrissat B, Moritz T, Sundberg B. Biosynthesis of cellulose -enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J, 2006, 45(2): 144-165.

[3]

Bar-Peled M, O’Neill MA. Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. Annu Rev Plant Biol, 2011, 62: 127-155.

[4]

Biswal AK, Atmodjo MA, Li M, Baxter HL, Yoo CG, Pu Y, Lee Y, Mazarei M, Black I, Zhang J, Ramanna H, Bray AL, King ZR, LaFayette PR, Pattathil S, Donohoe BS, Mohanty SS, Ryno D, Yee K, Thompson OA, Rodriguez JM, Dumitrache A, Natzke J, Winkeler K, Collins C, Yang X, Tan L, Sykes RW, Gjersing EL, Ziebell A, Turner GB, Decker SR, Hahn MG, Davison BH, Udvardi MK, Mielenz JR, Davis MF, Nelson RS, Parrott WA, Ragauskas AJ, Stewart JCN, Mohnen D. Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nat Biotech, 2018, 36(3): 249-257.

[5]

Bonawitz ND, Chapple C. The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet, 2010, 44: 337-363.

[6]

Chai G, Qi G, Cao Y, Wang Z, Yu L, Tang X, Yu Y, Wang D, Kong Y, Zhou G. Poplar PdC3H17 and PdC3H18 are direct targets of PdMYB3 and PdMYB21, and positively regulate secondary wall formation in Arabidopsis and poplar. New Phytol, 2014, 203(2): 520-534.

[7]

Chen F, Dixon RA. Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol, 2007, 25(7): 759-761.

[8]

Chundawat SP, Beckham GT, Himmel ME, Dale BE. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng, 2011, 2: 121-145.

[9]

Coleman HD, Yan J, Mansfield SD. Sucrose synthase affects carbon portioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA, 2009, 106: 13118-13123.

[10]

Eudes A, George A, Mukerjee P, Kim JS, Pollet B, Benke PI, Yang F, Mitra P, Sun L, Cetinkol OP, Chabout S, Mouille G, Soubigou-Taconnat L, Balzergue S, Singh S, Holmes BM, Mukhopadhyay A, Keasling JD, Simmons BA, Lapierre C, Ralph J, Loqué D. Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol J, 2012, 10(5): 609-620.

[11]

Fujii S, Hayashi T, Mizuno K. Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol, 2010, 51(2): 294-301.

[12]

Fukushima RS, Hatfield RD. Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. J Agric Food Chem, 2001, 49(7): 3133-3139.

[13]

Hertzberg M, Aspeborg H, Schrader J, Andersson A, Erlandsson R, Blomqvist K, Bhalerao R, Uhlén M, Teeri TT, Lundeberg J, Sundberg B, Nilsson P, Sandberg G. A transcriptional roadmap to wood formation. Proc Natl Acad Sci USA, 2001, 98(25): 14732-14737.

[14]

Jansson S, Douglas CJ. Populus: a model system for plant biology. Annu Rev Plant Biol, 2007, 58: 435-458.

[15]

Konishi T. Evidence that sucrose loaded into the phloem of a poplar leaf is used directly by sucrose synthase associated with various beta-glucan synthases in the stem. Plant Physiol, 2004, 134(3): 1146-1152.

[16]

Leplé JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang KY, Kim H, Ruel K, Lefèbvre A, Joseleau JP, Grima-Pettenati J, De Rycke R, Andersson-Gunnerås S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W. Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell, 2007, 19(11): 3669-3691.

[17]

Li Q, Song J, Peng S, Wang JP, Qu GZ, Sederoff RR, Chiang VL. Plant biotechnology for lignocellulosic biofuel production. Plant Biotechnol J, 2014, 12(9): 1174-1192.

[18]

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25(4): 402-408.

[19]

McQualter RB, Chong BF, Meyer K, Van Dyk DE, O’Shea MG, Walton NJ, Viitanen PV, Brumbley SM. Initial evaluation of sugarcane as a production platform for p-hydroxybenzoic acid. Plant Biotechnol J, 2005, 3(1): 29-41.

[20]

Mellerowicz EJ, Sundberg B. Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Curr Opin Plant Biol, 2008, 11(3): 293-300.

[21]

Merali Z, Mayer MJ, Parker ML, Michael AJ, Smith AC, Waldron KW. Metabolic diversion of the phenylpropanoid pathway causes cell wall and morphological changes in transgenic tobacco stems. Planta, 2007, 225(5): 1165-1178.

[22]

Pauly M, Keegstra K. Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol, 2010, 13(3): 304-311.

[23]

Qi G, Wang D, Yu L, Tang X, Chai G, He G, Ma W, Li S, Kong Y, Fu C, Zhou G. Metabolic engineering of 2-phenylethanol pathway producing fragrance chemical and reducing lignin in Arabidopsis. Plant Cell Rep, 2015, 34(8): 1331-1342.

[24]

Selvendran RR, March JF, Ring SG. Determination of aldoses and uronic acid content of vegetable fiber. Anal Biochem, 1979, 96(2): 282-292.

[25]

Smith RA, Schuetz M, Roach M, Mansfield SD, Ellis B, Samuels L. Neighboring parenchyma cells contribute to Arabidopsis xylem lignification, while lignification of interfascicular fibers is cell autonomous. Plant Cell, 2013, 25(10): 3988-3999.

[26]

Song D, Shen J, Li L. Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytol, 2010, 187(3): 777-7906.

[27]

Taboada A, Novo-Uzal E, Flores G, Loureda M, Ros Barceló A, Masa A, Pomar F. Digestibility of silages in relation to their hydroxycinnamic acid content and lignin composition. J Sci Food Agric, 2010, 90(7): 1155-1162.

[28]

Updegraff DM. Semimicro determination of cellulose in biological materials. Anal Biochem, 1969, 32(3): 420-424.

[29]

Van Acker R, Vanholme R, Storme V, Mortimer JC, Dupree P, Boerjan W. Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnol Biofuels, 2013 6 1 46

[30]

Voelker SL, Lachenbruch B, Meinzer FC, Kitin P, Strauss SH. Transgenic poplars with reduced lignin show impaired xylem conductivity, growth efficiency and survival. Plant Cell Environ, 2011, 34(4): 655-668.

[31]

Wang T, Hong M. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot, 2016, 67(2): 503-514.

[32]

Weng JK, Li X, Stout J, Chapple C. Independent origins of syringyl lignin in vascular plants. Proc Natl Acad Sci USA, 2008, 105(22): 7887-7892.

[33]

Wierzbicki MP, Maloney V, Mizrachi E, Myburg AA. Xylan in the middle: understanding xylan biosynthesis and its metabolic dependencies toward improving wood fiber for industrial processing. Front Plant Sci, 2019, 10: 176.

[34]

Xue GP, Mcintyre CL, Jenkins CLD, Glassop D, Van Herwaarden AF, Shorter R. Molecular dissection of variation in carbohydrate metabolism related to water-soluble carbohydrate accumulation in stems of wheat. Plant Physiol, 2007, 146(2): 441-454.

AI Summary AI Mindmap
PDF

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/