Uncertainty in sap flow of Brazilian mahogany determined by the heat ratio method

Alisson Macendo Amaral , Frederico Antonio Loureiro Soares , Lucas Melo Vellame , Marconi Batista Teixeira

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (4) : 1457 -1466.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (4) : 1457 -1466. DOI: 10.1007/s11676-020-01211-w
Original Paper

Uncertainty in sap flow of Brazilian mahogany determined by the heat ratio method

Author information +
History +
PDF

Abstract

The tropical arboreal species Brazilian mahogany (Swietenia macrophylla) is very important economically and ecologically, for which understanding ecophysiological variables such as sap flow will improve understanding of the species and its cultivation. This paper aims to measure uncertainties (U) involved in the application of the heat ratio method for determining sap flow in Brazilian mahogany using sets of heating probes and thermometers installed on plants of 18 months of age, cultivated in Yellow Latosol, under a weighing lysimeter and located in a protected environment. The uncertainty in sap flow was calculated as the combination of uncertainty in the thermal diffusivity (U k), conductive section (U Sc) and corrected sap velocity (U Vc). U k had greater weight in determining the flow of sap in Brazilian mahogany, when compared to U Sc and U Vc. The thermal diffusivity during the cycle, or period evaluated, must be adjusted to improve the accuracy of the heat ratio method because the sap flow overestimated transpiration by 15.0%. When soil water was optimal In addition, the vapor pressure deficit linearly and indirectly influenced the SF with a difference of 14.6%.

Keywords

Heat pulse / Diffusivity / Reliability / Transpiration / Vapor pressure deficit

Cite this article

Download citation ▾
Alisson Macendo Amaral, Frederico Antonio Loureiro Soares, Lucas Melo Vellame, Marconi Batista Teixeira. Uncertainty in sap flow of Brazilian mahogany determined by the heat ratio method. Journal of Forestry Research, 2020, 32(4): 1457-1466 DOI:10.1007/s11676-020-01211-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alves Júnior J, Barbosa LHA, Casaroli D, Evangelista AWP, Costa FR. Crescimento de mogno africano submetido a diferentes níveis de irrigação por microaspersão. Irriga, 2016, 21: 466-480.

[2]

Amaral AM, Cabral Filho FR, Vellame LM, Teixeira MB, Soares FAL, Santos LNS. Uncertainty of weight measuring systems applied to weighing lysimeters. Comput Electron Agric, 2018, 145: 208-216.

[3]

Bayona-Rodrigues CJ, Romero M. Estimation of transpiration in oil palm (Elaeis guineensis Jacq.) with the heat ratio method. Estimación de la transpiración en palma de aceite (Elaeis guineensis Jacq.) por el método del radio de calor. Agronomía Colombiana, 2016, 34: 172-178.

[4]

Becker P, Edwards WRN. Corrected heat capacity of wood for sap flow calculations. Tree Physiol, 1999, 19: 767-768.

[5]

Burgess S, Adams MA, Turner NC, Beverly CR, Ong CK, Khan AA, Bleby TM. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol, 2001, 21: 589-598.

[6]

Chambers JQ, Gimenez B, Jardine K, Negron Juarez RI, Cobello LO, Fontes C, Dawson TE, Higuchi N (2017) Vapor pressure deficit and sap velocity dynamic coupling in canopy dominant trees in the Amazon basin. American Geophysical Union Fall Meeting 383–385. Available in https://agu.confex.com/agu/fm17/meetingapp.cgi/Paper/290374. Accessed 13 July 2020

[7]

Chen L, Chen J, Chen C. Effect of environmental measurement uncertainty on prediction of evapotranspiration. Atmosphere, 2018, 9: 400.

[8]

Correia RG, Martins WBR, Oliveira FA, Dionisio LF, Neves RLP, Batista FV. Production and decomposition of litter in different mahogany (Swietenia macrophylla King) cropping systems. Rev Ciência da Madeira RCM, 2018, 9: 103-110.

[9]

Da Rocha KJ, Caldeira SF, Brondani GE. Development of Swietenia macrophylla King in escape areas. Sci For Sci, 2016, 44: 281-291.

[10]

De Paula MT, Santos Filho BG, Cordeiro YEM, Conde RA, Neves PAPFG (2013) Ecofisiologia do mogno brasileiro (Swietenia macrophylla King) em sistemas agroflorestais no município de Santa Bárbara-PA. Enciclopedia Biosfera 9:813–824. Available in http://www.conhecer.org.br/enciclop/2013a/agrarias/Ecofisiologia.pdf. Accessed 13 July 2020

[11]

Doronila A, Forster MA. Performance measurement via sap flow monitoring of three eucalyptus species for mine site and dryland salinity phytoremediation. Int J Phytorem, 2013, 17: 101-108.

[12]

Eliades M, Bruggeman A, Djuma H, Lubczynski MW. Tree water dynamics in a semi-arid, Pinus brutia forest. Water, 2018, 10: 1-21.

[13]

Eller CB, Bittencourt PRL, Oliveira RS. Using sap flow to measure whole-tree hydraulic conductance loss in response to drought. Acta Hortic, 2018, 1222: 75-84.

[14]

Flo V, Martinez-vilalta J, Steppe K, Schuldt B, Poyatos R. A synthesis of bias and uncertainty in sap flow methods. Agric For Meteorol, 2019, 271: 362-374.

[15]

Forster MA. How significant is nocturnal sap flow?. Tree Physiol, 2014, 34: 757-765.

[16]

Forster M. How reliable are heat pulse velocity methods for estimating tree transpiration?. Forests, 2017, 8: 350.

[17]

Forster MA. The Dual Method Approach (DMA) resolves measurement range limitations of heat pulse velocity sap flow sensors. Forests, 2019, 10: 8-10.

[18]

Fuchs S, Leuschner C, Link R, Coners H, Schuldt B. Calibration and comparison of thermal dissipation, heat ratio and heat field deformation sap flow probes for diffuse-porous trees. Agric For Meteorol, 2017, 244–245: 151-161.

[19]

González-Rodríguez ÁM, Brito P, Lorenzo JR, Gruber A, Oberhuber W, Wieser G. Seasonal cycles of sap flow and stem radius variation of Spartocytisus supranubius in the alpine zone of Tenerife, Canary Islands. Alp Bot, 2017, 127: 97-108.

[20]

Green SR, Romero R. Can we improve heat-pulse to measure low and reverse flows. Acta Hortic, 2012, 951: 19-30.

[21]

Hernandez-santana V, Hernandez-hernandez A, Vadeboncoeur MA, Asbjornsen H. Scaling from single-point sap velocity measurements to stand transpiration in a multispecies deciduous forest: uncertainty sources, stand structure effect, and future scenarios. Can J For Res, 2015, 45(11): 1489-1497.

[22]

Inmetro (2008) A Estimativa da Incerteza de Medição Pelos Métodos do ISO GUM 95 e de Simulação de Monte Carlo. Nota técnica 02:33. Available in http://www.inmetro.gov.br/metcientifica/mecanica/pdf/ISOGUM95_MonteCarlo.pdf. Accessed 13 July 2020

[23]

Larekeng SH, Restu M, Arsyad MA. Observation of morphological and physiological characteristics on Abangares Mahogany (Swietenia macrophylla King.) In South Sulawesi. IOP Conf Ser Earth Environ Sci, 2019, 270: 012022.

[24]

Leão NVM (2011) Colheita de Sementes e Produção de Mudas de Espécies Florestais Nativas. Embrapa Amaz Orient 1–52. https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/920713/1/DOC374.pdf. Access in July 13 2020

[25]

Looker N, Martin J, Jencso K, Hu J. Contribution of sapwood traits to uncertainty in conifer sap flow as estimated with the heat-ratio method. Agric For Meteorol, 2016, 223: 60-71.

[26]

Marshal DC. Measurement of sap flow in conifers by heat transport. Plant Physiol, 1958, 33: 385-396.

[27]

Mi CN, Wang H, Chen HQ, Cai CH, Li SP, Mei WL, Dai HF. Polyacetylenes from the roots of Swietenia macrophylla King. Molecules, 2019, 24: 1291.

[28]

Morton D, Ghayvat H, Mukhopadhyay SC, Green S (2016) Sensors and instrumentation to measure Sap flow in small stem plants. In: IEEE international instrumentation and measurement technology conference proceedings, Taipei, pp 1–6. https://doi.org/10.1109/I2MTC.2016.7520519

[29]

Mukaromah AS, Purwestri YA, Fujii Y. Determination of allelopathic potential in Mahogany (Swietenia macrophylla King) leaf litter using sandwich method. Indones J Biotechnol, 2017, 21: 93.

[30]

Peters RL, Fonti P, Frank DC, Poyatos R, Pappas C, Kahmen A, Carraro V, Prendin AL, Schneider L, Baltzer JL, Baron-Gafford GA, Dietrich L, Heinrich I, Minor RL, Sonnentag O, Matheny AM, Wightman MG, Steppe K. Quantification of uncertainties in conifer sap flow measured with the thermal dissipation method. New Phytol, 2018, 219(4): 1283-1299.

[31]

Rodrigues HJB, Costa RF, Ribeiro JBM, Souza Filho JDC, Ruivo MLP, Silva Júnior JA. Variabilidade sazonal da condutância estomática em um ecossistema de manguezal amazônico e suas relações com variáveis meteorológicas. Revista Brasileira de Meteorologia, 2011, 26(2): 189-196.

[32]

Salomón RL, De Schepper V, Carabaña MV Daytime depression in temperature-normalised stem CO2 efflux in young poplar trees is dominated by low turgor pressure rather than by internal transport of respired CO2. New Phytol, 2017, 217: 586-598.

[33]

Shen Q, Gao G, Fu B, Y. Sap flow and water use sources of shelter-belt trees in an arid inland river basin of Northwest China. Ecohydrology, 2015, 8: 1446-1458.

[34]

Silva OMC, Santana LS, Stevens TPB, Souza DC, Finoti ACL (2018) Curva de secagem em madeira de Pinus caribaea VAR. HONDURENSIS. Agrar Acad 5(9):140–152. https://doi.org/10.18677/Agrarian_Academy_2018a14

[35]

Simunek JJ, Jacques D, Langergraber G, Bradford SA, Šejna M, Genuchten MT (2013) Numerical modeling of contaminant transport using HYDRUS and its specialized modules. J Indian Inst Sci (93)2:265–284. http://journal.library.iisc.ernet.in/index.php/iisc/article/view/1224/2474

[36]

Sinclair TR (2017) Limited-transpiration rate under elevated atmospheric vapor pressure deficit. In: Sinclair T (ed) Water-conservation traits to increase crop yields in water-deficit environments. Springer Briefs in Environmental Science, pp 11–16. https://doi.org/10.1007/978-3-319-56321-3_3

[37]

Steppe K, Vandegehuchte MW, Tognetti R, Mencuccini M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol, 2015, 35: 341-345.

[38]

Teixeira WF, Fagan EB, Silva JO, Silva PG, Silva FH, Sousa MC, Canedo SC. Nitrate reductase activity and growth of Swietenia macrophylla King under shading effect. Floresta e Ambient, 2013, 20: 91-98.

[39]

Tonello KC, Teixeira Filho J. Scaling up of leaf transpiration ans stomatal cinductance of two Eucalyptus grandis x Eucalyptus urophylla clone in response to environmental variables. Scientia Forestalis, 2011, 39(90): 253-264.

[40]

Vandegehuchte MW, Steppe K. Use of the correct heat conduction—convection equation as basis for heat-pulse sap flow methods in anisotropic wood. J Exp Bot, 2012, 63: 2833-2839.

[41]

Vandegehuchte MW, Steppe K. Sap-flux density measurement methods: working principles and applicability. Funct Plant Biol, 2013, 40(3): 213-223.

[42]

Vandegehuchte MW, Steppe K, Phillips N. Improving sap flux density measurements by correctly determining thermal diffusivity, differentiating between bound and unbound water. Tree Physiol, 2012, 32: 930-942.

[43]

Vergeynst LL, Vandegehuchte MW, Mcguire MA, Teskey RO, Steppe K. Changes in stem water content influence sap flux density measurements with thermal dissipation probes. Trees, 2014, 28: 949-955.

[44]

Wang S, Fan J, Ge J, Wang Q, Yong C, You W. New design of external heat-ratio method for measuring low and reverse rates of sap flow in thin stems. For Ecol Manag, 2018, 419–420: 10-16.

[45]

Yu T, Feng Q, Si J, Mitchell PJ, Forster MA, Zhang X, Zhao C. Depressed hydraulic redistribution of roots more by stem refilling than by nocturnal transpiration for Populus euphratica Oliv. In situ measurement. Ecol Evol, 2018, 8(5): 2607-2616.

[46]

Zhao CY, Si JH, Feng Q, Yu TF, Li PD. Comparative study of daytime and nighttime sap flow of Populus euphratica. Plant Growth Regul, 2017, 82: 353-362.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/