Fine-scale analysis reveals a potential influence of forest management on the spatial genetic structure of Eremanthus erythropappus

Lucas Fernandes Rocha , Natália Ribeiro de Paula , Dulcinéia De Carvalho

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (4) : 1567 -1578.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (4) : 1567 -1578. DOI: 10.1007/s11676-020-01204-9
Original Paper

Fine-scale analysis reveals a potential influence of forest management on the spatial genetic structure of Eremanthus erythropappus

Author information +
History +
PDF

Abstract

Forest management may have significant effects on forest connectivity and natural population sizes. Harvesting old-growth single trees may also change natural patterns of genetic variation and spatial genetic structure. This study evaluated the impacts of forest management using a silvicultural system of seed trees on the genetic diversity and spatial genetic structure of Eremanthus erythropappus (DC.) MacLeish. A complete survey of 275 trees on four plots was undertaken out to compare the genetic variation of a managed stand with an unmanaged stand. We genotyped all adult and juvenile individuals 60 months after the management and compared the genetic diversity and the spatial genetic structure parameters. Genetic diversity was considered high because of an efficient gene flow between stands. There were no genetic differences between stands and no evidence of inbreeding. Genetic clustering identified a single population (K = 1), indicating no genetic differentiation between managed and unmanaged stands. Adult and juvenile individuals of the unmanaged stand were more geographically structured than individuals from the managed one. There was a tendency of coancestry among juveniles at the first class of distance of the managed stand, suggesting a drift of genetic structure possibly caused by management. Understanding early responses to management on genetic diversity and stand structure is a first step to ensuring the effectiveness of conservation practices of tree species. The sustainability of forest management of E. erythropappus on genetic diversity, and more accurately, on spatial genetic structure needs evaluation over time to promote effective conservation of the population size and genetic variability.

Keywords

Genetic diversity / Microsatellite markers / Gene flow / Silvicultural management / Brazilian Cerrado

Cite this article

Download citation ▾
Lucas Fernandes Rocha, Natália Ribeiro de Paula, Dulcinéia De Carvalho. Fine-scale analysis reveals a potential influence of forest management on the spatial genetic structure of Eremanthus erythropappus. Journal of Forestry Research, 2020, 32(4): 1567-1578 DOI:10.1007/s11676-020-01204-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ackzell L. A comparison of planting, sowing and natural regeneration for Pinus sylvestris L. in boreal Sweden. For Ecol Manag, 1993, 61: 229-245.

[2]

Aldrich PR, Hamrick JL. Reproductive dominance of pasture trees in a fragmented tropical forest mosaic. Science, 1998, 281: 103-105.

[3]

Andrade IS (2009) Avaliação técnica e econômica de sistemas de manejo de candeais nativos. D. Phil. thesis, Universidade Federal de Lavras

[4]

Aravanopoulos F. Do silviculture and forest management affect the genetic diversity and structure of long-impacted forest tree populations?. Forests, 2018 9 6 355

[5]

Avise JC, Hamrick JL (1996) Conservation genetics, case histories from nature. Chapman & Hall, 512 pp

[6]

Barreira S, Sebbenn AM, Scolforo JRS, Kageyama PY. Diversidade genética e sistema de reprodução em população nativa de Eremanthus erythropappus (DC.) MacLeish sob exploração. Sci For, 2006, 71: 119-130.

[7]

Bergeron Y, Vijayakumar DBIP, Ouzennou H, Raulier F, Leduc A, Gauthier S. Projections of future forest age class structure under the influence of fire and harvesting: implications for forest management in the boreal forest of eastern Canada. Int J For Res, 2017, 90(4): 485-495.

[8]

Borrell JS, Wang N, Nichols RA, Buggs RJ. Genetic diversity maintained among fragmented populations of a tree undergoing range contraction. Heredity, 2018 121 4 304

[9]

Braga EA (2006) Substratos e fertilização na produção de mudas de candeia Eremanthus erythropappus (DC.) McLeisch, em tubetes. Dissertation, Universidade Federal de Lavras

[10]

Brito VL, Mori GM, Vigna BB, Azevedo-Silva M, Souza AP, Sazima M. Genetic structure and diversity of populations of polyploid Tibouchina pulchra Cogn. (Melastomataceae) under different environmental conditions in extremes of an elevational gradient. Tree Genet Genomes, 2016 12 6 101

[11]

Brown AD, Kappelle M. Kappell M, Brown AD. Introdducción a los bosques nublados del neotrópico: una síntesis regional. Bosques nublados del neotrópico, 2001, Santo Domingo de Heredia: Instituto Nacional de Biodiversidad 25 40

[12]

Carneiro FS, Lacerda AEB, Leme MR, Gribel R, Kanashiro M, Wadt LHO, Sebbenn AM. Effects of selective logging on the mating system and pollen dispersal of Hymenaea courbaril L. (leguminosae) in the Eastern Amazon as revealed by microsatellite analysis. For Ecol Manag, 2011, 262: 1758-1765.

[13]

Carvalho D, Barreira S, Moura MC. Scolforo JRS, Oliveira AD, Davide AC. Genética, manejo e conservação. O manejo sustentável da candeia: o caminhar de uma nova experiência florestal em Minas Gerais, 2012, Lavras: Editora UFLA 237 246

[14]

Cascante A, Quesada M, Lobo JJ, Fuchs EA. Effects of dry tropical forest fragmentation on the reproductive success and genetic structure of the tree Samanea saman. Conserv Biol, 2002, 16(1): 137-147.

[15]

Castilla AR, Pope N, Jha S. Positive density-dependent reproduction regulated by local kinship and size in an understory tropical tree. Ann Bot, 2015, 117(2): 319-329.

[16]

Cavers S, Cottrell JE. The basis of resilience in forest tree species and its use in adaptive forest management in Britain. Int J For Res, 2014, 88(1): 13-26.

[17]

Cavers S, Degen B, Caron H, Lemes MR, Margis R, Salgueiro F, Lowe AJ. Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity, 2005, 95(4): 281-289.

[18]

Cloutier D, Kanashiro M, Ciampi AY, Schoen DJ. Impacts of selective logging on inbreeding and gene dispersal in an Amazonian tree population of Carapa guianensis Aubl. Mol Ecol, 2007, 16: 797-809.

[19]

Couvet D. Deleterious effects of restricted gene flow in fragmented populations. Conserv Biol, 2002, 16(2): 369-376.

[20]

Crnokrak P, Roff DA. Inbreeding depression in the wild. Heredity, 1999, 83: 260-270.

[21]

Crow JF, Aoki K. Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc Natl Acad Sci, 1984, 81(19): 6073-6077.

[22]

Cruz ES (2006) Dinâmica, modelagem do crescimento e cadeia de comercialização da candeia Eremanthus incanus (Less.) Less. D. Phil. thesis, Universidade Federal de Lavras

[23]

Curi N, Marques JJG, Marques AFSM, Fernandes EI. Scolforo JR, Carvalho LMT, Oliveira AD. Solos, relevo, geologia e mineração. Zoneamento Ecológico Econômico de Minas Gerais: componentes geofísico e biótico, 2008, Lavras: Editora UFLA 73 88

[24]

Dias ACC, Serra AC, Sampaio DS, Borba EL, Bonetti AM, Oliveira PE. Unexpectedly high genetic diversity and divergence among populations of the apomictic Neotropical tree Miconia albicans. Plant Biol, 2017, 20(2): 244-251.

[25]

Dick CW, Hardy OJ, Jones FA, Petit RJ. Spatial scales of pollen and seed-mediated gene flow in tropical rain forest trees. Trop Plant Biol, 2008, 1(1): 20-33.

[26]

Dixo M, Metzger JP, Morgante JS, Zamudio KR. Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal. Biol Conserv, 2009, 142(8): 1560-1569.

[27]

Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus, 1987, 12(1): 13-15.

[28]

Duarte JF, Carvalho D, Vieira FA. Genetic conservation of Ficus bonijesulapensis in a dry forest on limestone outcrops. Biochem Syst Ecol, 2015, 59: 54-62.

[29]

Earl DA. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour, 2012, 4(2): 359-361.

[30]

Estopa RA, Souza AD, Moura MCO, Botrel MCG, Mendonça EG, Carvalho D. Diversidade genética em populações naturais de candeia (Eremanthus erythropappus (DC.) MacLeish). Sci Forestalis, 2006, 70: 97-106.

[31]

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol, 2005, 14: 2611-2620.

[32]

Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour, 2010, 10(3): 564-567.

[33]

Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 2003, 164: 1567-1587.

[34]

Folke C. Resilience: the emergence of a perspective for social-ecological systems analyses. Glob Environ Change, 2006, 16(3): 253-267.

[35]

Frankham R, Ballou J, Briscoe D (2002) An introduction to conservation genetics. Cambridge University Press, p 642

[36]

Freitas VLO, Lemos-Filho JP, Lovato MB. Contrasting genetic diversity and differentiation of populations of two successional stages in a neotropical pioneer tree (Eremanthus erythropappus, Asteraceae). Genet Mol Res, 2008, 7(2): 388-398.

[37]

García-Gil MR, Floran V, Östlund L, Gull BA. Genetic diversity and inbreeding in natural and managed populations of Scots pine. Tree Genet Genomes, 2015, 11(2): 1-12.

[38]

Ghanzoul J. Pollen and seed dispersal among dispersed plants. Biol Rev, 2005, 80: 413-443.

[39]

González-Díaz P, Jump AS, Perry A, Wachowiak W, Lapshina E, Cavers S. Ecology and management history drive spatial genetic structure in Scots pine. For Ecol Manag, 2017, 400: 68-76.

[40]

Goudet J. Fstat Vision (1.2): a computer program to calculate F-statistics. J Hered, 2002, 86: 485-486.

[41]

Guariguata MR, Ostertag R. Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manag, 2001, 148: 185-206.

[42]

Hamrick JL, Godt MJW. Brown AHD, Clegg MT, Kahler AL, Weir BS. Allozyme diversity in plant species. Plant population genetics, breeding and genetic resources, 1990, Sunderland: Sinauer 44 64

[43]

Hamrick JL, Godt JWM, Sherman-Broyles SL. Factors influencing levels of genetic diversity in woody plant species. New For, 1992, 6: 95-124.

[44]

Hardwick KA, Elliot S. Second growth: the promise of tropical forest regeneration in an age of deforestation. Restor Ecol, 2015 24 1 137

[45]

Hardy OJ, Vekemans X. SPAGeDi: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002, 2: 618-620.

[46]

Hawley GJ, Schaberg PG, DeHayes DH, Brissette JC. Silviculture alters the genetic structure of an eastern hemlock forest in Maine. USA. Can J For Res, 2005, 35: 143-150.

[47]

Jump AS, Rico L, Coll M, Penuelas J. Wide variation in spatial genetic structure between natural populations of the European beech (Fagus sylvatica) and its implications for SGS comparability. Heredity, 2012, 108(6): 633-639.

[48]

Kisdi E, Stefan AHG. Adaptive dynamics in allele space: evolution of genetic polymorphism by small mutations in a heterogeneous environment. Evolution, 1999, 53(4): 993-1008.

[49]

Köppen W, Geiger R (1928) Klimate der Erde. Gotha: Verlag Justus Perthes. Wall-map 150 cm × 200 cm

[50]

Lacerda AEB, Kanashiro M, Sebbenn AM. Effects of reduced impact logging on genetic diversity and spatial genetic structure of a Hymenaea courbaril population in the Brazilian Amazon Forest. For Ecol Manag, 2008, 255: 1034-1043.

[51]

Lande R, Schemske DW. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution, 1985, 39(1): 24-40.

[52]

Loiselle BA, Sork VL, Nason J, Graham C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot, 1995, 82(11): 1420-1425.

[53]

Loveless MD, Hamrick JL. Ecological determinants of genetic-structure in plant populations. Annu Rev Ecol Syst, 1984, 15: 65-95.

[54]

Martins K, Kimura RK, Francisconi AF, Gezan S, Kainer K, Christianini AV. The role of very small fragments in conserving genetic diversity of a common tree in a hyper fragmented Brazilian Atlantic forest landscape. Conserv Genet, 2016, 17: 509-520.

[55]

Melo LA, Davide AC, Teixeira LAT. Metodologia para resgate de matrizes e enraizamento de estacas de Eremanthus erythropappus. Cerne, 2012, 18(4): 631-638.

[56]

Mori CLSO, Brito JO, Scolforo JRS, Vidal EJ, Mendes LM. Influence of altitude, age and diameter on yield and alpha-bisabolol content of candeia trees (Eremanthus erythropappus). Cerne, 2009, 15(3): 339-345.

[57]

Morjan CL, Rieseberg LH. How species evolve collectively: implications of gene flow and selection for the spread of advantageous alleles. Mol Ecol, 2004, 13: 1341-1356.

[58]

Moura MCO (2005) Distribuição da variabilidade genética em populações naturais de Eremanthus erythropappus (DC) MacLeish por isoenzimas e RAPD. D. Phil thesis, Universidade Federal de Lavras

[59]

Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978, 89(3): 583-590.

[60]

Nybom H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol, 2004, 13: 1143-1155.

[61]

Nybom H, Bartish IV. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Syst, 2000, 3(2): 93-114.

[62]

Oliveira ADD, Ribeiro SAI, Scolforo JRS, Mello JMD, Acerbi Junior FW, Camolesi JF. Market chain analysis of candeia timber (Eremanthus erythropappus). Cerne, 2009, 15(3): 257-264.

[63]

Oostermeijer JGB, Van Eijck MW, Den Nijs HCM. Offspring fitness in relation to population size and genetic variation in the rare perennial plant species Gentiana pneumonanthe (Gentianaceae). Oecologia, 1994, 97: 289-296.

[64]

Ortega J, Bonal R, Muñoz A. Genetic consequences of habitat fragmentation in long-lived tree species: the case of the mediterranean holm oak (Quercus ilex, L.). J Hered, 2010, 101(6): 717-726.

[65]

Pádua JAR, Brandão MM, Carvalho D. Spatial genetic structure in natural populations of the overexploited tree Eremanthus erythropappus (DC.) MacLeish (Asteraceae). Biochem Syst Ecol, 2016, 66: 307-311.

[66]

Peakall ROD, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes, 2006, 6(1): 288-295.

[67]

Petrokofsky G, Sist P, Blanc L, Doucet JL, Finegan B, Gourlet-Fleury S, Healey JR, Livoreil B, Nasi R, Peña-Claros M, Putz FE. Comparative effectiveness of silvicultural interventions for increasing timber production and sustaining conservation values in natural tropical production forests. Environ Evid, 2015, 4(8): 1-7.

[68]

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.

[69]

Quéméré E, Crouau-Roy B, Rabarivola C, Louis EE, Chikhi L. Landscape genetics of an endangered lemur (Propithecus tattersalli) within its entire fragmented range. Conserv Genet, 2010, 19: 1606-1621.

[70]

Rajora OP, Pluhar SA. Genetic diversity impacts of forest fires, forest harvesting, and alternative reforestation practices in black spruce (Picea mariana). Theor Appl Genet, 2003, 106(7): 1203-1212.

[71]

Ratnam W, Rajora OP, Finkeldey R, Aravanopoulos F, Bouvet JM, Vaillancourt RE, Kanashiro M, Fady B, Vinson C. Genetic effects of forest management practices: global synthesis and perspectives. For Ecol Manag, 2014, 333: 52-65.

[72]

Ribeiro ISA (2009) Avaliação técnica e econômica de sistemas de manejo de candeais nativos. D. Phil thesis, Universidade Federal de Lavras

[73]

Ritland K. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res, 1996, 67(2): 175-185.

[74]

Robledo-Arnuncio JJ, Alia R, Gil L. Increased selfing and correlated paternity in a small population of a predominantly outcrossing conifer, Pinus sylvestris. Mol Ecol, 2004, 13(9): 2567-2577.

[75]

Rocha LF, Carmo IEP, Póvoa JRS, Carvalho D. Effects of climate changes on distribution of Eremanthus erythropappus and E. incanus (Asteraceae) in Brazil. J For Res, 2020, 31: 353-364.

[76]

Rocha LF, Paula NR, Nazareno AG, Carvalho D. Development and characterization of nuclear microsatellite markers for Eremanthus erythropappus and their transferability across related species. Biol Res, 2020, 53(30): 1-5.

[77]

Santos KA, Frohlich PC, Hoscheid J, Tiuman TS, Gonçalves JE, Cardozo-Filho L, Silva EA. Candeia (Eremanthus erythroppapus) oil extraction using supercritical CO2 with ethanol and ethyl acetate cosolvents. J Supercrit Fluids, 2017, 128: 323-330.

[78]

Schaberg PG, DeHayes DH, Hawley GJ, Nijensohn SE. Anthropogenic alterations of genetic diversity within tree populations: implications for forest ecosystem resilience. For Ecol Manag, 2008, 256(5): 855-862.

[79]

Scolforo JRS, Loeuille BFP, Altoé TF (2012) O manejo sustentável da candeia: o caminhar de uma nova experiência florestal em Minas Gerais. Editora UFLA

[80]

Scolforo HF, Scolforo JRS, Mello JM, Rossoni DF, Altoé TF, Oliveira AD, Lima RR. Autoregressive spatial analysis and individual tree modeling as strategies for the management of Eremanthus erythropappus. J For Res, 2015, 27(3): 595-603.

[81]

Silva MB, Kanashiro M, Ciampi AY, Thompson I, Sebbenn AM. Genetic effects of selective logging and pollen gene flow in a low-density population of the dioecious tropical tree Bagassa guianensis in the Brazilian Amazon. For Ecol Manag, 2008, 255: 1548-1558.

[82]

Sjölund MJ, Jump AS. The benefits and hazards of exploiting vegetative regeneration for forest conservation management in a warming world. Forestry, 2013, 86(5): 503-513.

[83]

Sjölund MJ, Jump AS. Coppice management of forests impacts spatial genetic structure but not genetic diversity in European beech (Fagus sylvatica L.). For Ecol Manag, 2015, 336: 65-71.

[84]

Slatkin M, Barton NH. A comparison of three indirect methods for estimating average levels of gene flow. Evolution, 1989, 43(7): 1349-1368.

[85]

Smouse PE, Peakall R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity, 1999, 82(5): 561-573.

[86]

Soliani C, Vendramin GG, Gallo LA, Marchelli P. Logging by selective extraction of best trees: does it change patterns of genetic diversity? The case of Nothofagus pumilio. For Ecol Manag, 2016, 373: 81-92.

[87]

Telford A, Cavers S, Ennos RA, Cottrell JE. Can we protect forests by harnessing variation in resistance to pests and pathogens?. Int J For Res, 2014, 88(1): 3-12.

[88]

Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes, 2004, 4(3): 535-538.

[89]

Varshney RK, Graner A, Sorrells ME. Genic microsatellite markers in plants: features and applications. Trends Biotechnol, 2005, 23(1): 48-55.

[90]

Vekemans X, Hardy OJ. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol, 2004, 13(4): 921-935.

[91]

Vieira FA, Fajardo CG, Carvalho D. Biologia Floral de candeia (Eremanthus erythropappus, Asteraceae). Pesqui Florest Bras, 2012, 32(72): 477-481.

[92]

Vinson CC (2009) The impact of selective logging on inbreeding and gene flow in two Amazonian timber species with contrasting ecological and reproductive characteristics. D. Phil. thesis, University of Oxford

[93]

Wickneswari R. Wickneswari R, Cannon CH. Threats to genetic viability of Southeast Asian forest species. Managing the future of Southeast Asia’s valuable tropical rainforests, a practitioner’s guide to forest genetics, 2011, Dordrecht Heidelberg: Springer 69 82

[94]

Wright S. Evolution in Mendelian populations. Genetics, 1931, 16: 97-159.

[95]

Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31(1)

[96]

Young A, Boyle T, Brown T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol, 1996, 11(10): 413-418.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/