Flexible transparent wood enabled by epoxy resin and ethylene glycol diglycidyl ether

Hangchuan Cai , Zhiqi Wang , Di Xie , Panpan Zhao , Jianping Sun , Daoyu Qin , Fangchao Cheng

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (4) : 1779 -1787.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (4) : 1779 -1787. DOI: 10.1007/s11676-020-01201-y
Original Paper

Flexible transparent wood enabled by epoxy resin and ethylene glycol diglycidyl ether

Author information +
History +
PDF

Abstract

Transparent wood has potential application in intelligent building, solar cell, electronics, and other advanced materials, while its single functionability hinders its further development. Flexible transparent wood (FTW) was prepared by alkaline pretreatment and bleaching treatment of paulownia wood followed by impregnation of epoxy resin and ethylene glycol diglycidyl ether (EDGE). The effect of delignification degree on the optical and mechanical properties of FTW was studied, and the influence of the epoxy/EDGE ratio on the flexibility and mechanical properties of FTW was also investigated. The results showed that higher delignification degree resulted in higher transmittance of FTW. More EDGE addition led to better flexibility of FTW, while overmuch addition of EDGE will reduce the mechanical properties. The optimal FTW sample resulted in a high transmittance of 89% and an ultrahigh haze value of 97% with outstanding flexibility and excellent mechanical properties. The investigation of FTW broadens the research field of transparent wood, and provides great possibility for its application in flexible wearable devices and flexible materials.

Keywords

Transparent wood / Epoxy resin / Ethylene glycol diglycidyl ether / Flexibility

Cite this article

Download citation ▾
Hangchuan Cai, Zhiqi Wang, Di Xie, Panpan Zhao, Jianping Sun, Daoyu Qin, Fangchao Cheng. Flexible transparent wood enabled by epoxy resin and ethylene glycol diglycidyl ether. Journal of Forestry Research, 2020, 32(4): 1779-1787 DOI:10.1007/s11676-020-01201-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdulhameed AS, Jawad AH, Mohammad A-T. Synthesis of chitosan-ethylene glycol diglycidyl ether/TiO2 nanoparticles for adsorption of reactive orange 16 dye using a response surface methodology approach. Bioresour Technol, 2019, 293: 122071.

[2]

Bi Z, Li T, Su H, Ni Y, Yan L. Transparent wood film incorporating carbon dots as encapsulating material for white light-emitting diodes. ACS Sustain Chem Eng, 2018, 6(7): 9314-9323.

[3]

Brischke C, Welzbacher CR, Boeckmann O. Critical heat flux densities of various flooring materials for outdoor applications. Eur J Wood Wood Prod, 2012, 70(1–3): 199-207.

[4]

Cao Y, Shao Y, Sun J, Lin SA. Mechanical properties of an epoxy resin toughened by polyester. J Appl Polym Sci, 2003, 90(12): 3384-3389.

[5]

Cheng F, Sun J, Wang Z, Zhao X, Hu Y. Organosolv fractionation and simultaneous conversion of lignocellulosic biomass in aqueous 1,4-butanediol/acidic ionic-liquids solution. Ind Crop Prod, 2019, 138: 111573.

[6]

Cullis IF, Mansfield SD. Optimized delignification of wood-derived lignocellulosics for improved enzymatic hydrolysis. Biotechnol Bioeng, 2010, 106(6): 884-893.

[7]

Gan W, Gao L, Xiao S, Zhang W, Zhan X, Li J. Transparent magnetic wood composites based on immobilizing Fe3O4 nanoparticles into a delignified wood template. J Mater Sci, 2017, 52(6): 3321-3329.

[8]

Gan W, Xiao S, Gao L, Gao R, Li J, Zhan X. Luminescent and transparent wood composites fabricated by poly(methyl methacrylate) and γ-Fe2O3@YVO4:Eu3+ nanoparticle impregnation. ACS Sustain Chem Eng, 2017, 5(5): 3855-3862.

[9]

Jawad AH, Mamat NFH, Hameed BH, Ismail K. Biofilm of cross-linked chitosan-ethylene glycol diglycidyl ether for removal of reactive red 120 and methyl orange: adsorption and mechanism studies. J Environ Chem Eng, 2019 7 2 102965

[10]

Jia C, Li T, Chen C, Dai J, Kierzewski IM, Song J, Li Y, Yang C, Wang C, Hu L. Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy, 2017, 36: 366-373.

[11]

Li T, Zhu M, Yang Z, Song J, Dai J, Yao Y, Luo W, Pastel G, Yang B, Hu L. Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation. Adv Energy Mater, 2016 6 22 1601122

[12]

Li Y, Fu Q, Yu S, Yan M, Berglund L. Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromol, 2016, 17(4): 1358-1364.

[13]

Li Y, Yu S, Veinot JGC, Linnros J, Berglund L, Sychugov I. Luminescent transparent wood. Adv Opt Mater, 2017 5 1 1600834

[14]

Li Y, Fu Q, Yang X, Berglund L. Transparent wood for functional and structural applications. Philos Trans R Soc A Math Phys Eng Sci, 2018 376 2112 20170182

[15]

Meure S, Wu D-Y, Furman SA. FTIR study of bonding between a thermoplastic healing agent and a mendable epoxy resin. Vib Spectrosc, 2010, 52(1): 10-15.

[16]

Montanari C, Li Y, Chen H, Yan M, Berglund LA. Transparent wood for thermal energy storage and reversible optical transmittance. ACS Appl Mater Interfaces, 2019, 11(22): 20465-20472.

[17]

Qin J, Li X, Shao Y, Shi K, Zhao X, Feng T, Hu Y. Optimization of delignification process for efficient preparation of transparent wood with high strength and high transmittance. Vacuum, 2018, 158: 158-165.

[18]

Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc, 2004, 36(1): 23-40.

[19]

Sinha A, Islam Khan N, Das S, Zhang J, Halder S. Effect of reactive and non-reactive diluents on thermal and mechanical properties of epoxy resin. High Perform Polym, 2018, 30(10): 1159-1168.

[20]

Song J, Chen C, Wang C, Kuang Y, Li Y, Jiang F, Li Y, Hitz E, Zhang Y, Liu B, Gong A, Bian H, Zhu JY, Zhang J, Li J, Hu L. Superflexible wood. ACS Appl Mater Interfaces, 2017, 9(28): 23520-23527.

[21]

Subba Rao AN, Nagarajappa GB, Nair S, Chathoth AM, Pandey KK. Flexible transparent wood prepared from poplar veneer and polyvinyl alcohol. Compos Sci Technol, 2019, 182: 107719.

[22]

Tanabe T, Okitsu N, Yamauchi K. Fabrication and characterization of chemically crosslinked keratin films. Mater Sci Eng C Biomim Supramol Syst, 2004, 24(3): 441-446.

[23]

Tang Q, Fang L, Wang Y, Zou M, Guo W. Anisotropic flexible transparent films from remaining wood microstructures for screen protection and AgNW conductive substrate. Nanoscale, 2018, 10(9): 4344-4353.

[24]

Tjeerdsma BF, Militz H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh Werkst, 2005, 63(2): 102-111.

[25]

Tong G, Yokoyama T, Matsumoto Y, Meshitsuka G. Analysis of progress of oxidation reaction during oxygen-alkali treatment of lignin I: method and its application to lignin oxidation. J Wood Sci, 2000, 46(1): 32-39.

[26]

Varley RJ. Toughening of epoxy resin systems using low-viscosity additives. Polym Int, 2004, 53(1): 78-84.

[27]

Wang Y, Hirakawa S, Wang H, Tanaka K, Kita H, Okamoto K-I. Pervaporation properties to aromatic/non-aromatic hydrocarbon mixtures of cross-linked membranes of copoly(methacrylates) with pendant phosphate and carbamoylphosphonate groups. J Membr Sci, 2002, 199(1): 13-27.

[28]

Wang L, Liu Y, Zhan X, Luo D, Sun X. Photochromic transparent wood for photo-switchable smart window applications. J Mater Chem C, 2019, 7(28): 8649-8654.

[29]

Wizeman WJ, Kofinas P. Molecularly imprinted polymer hydrogels displaying isomerically resolved glucose binding. Biomaterials, 2001, 22(12): 1485-1491.

[30]

Wu J, Wu Y, Yang F, Tang C, Huang Q, Zhang J. Impact of delignification on morphological, optical and mechanical properties of transparent wood. Compos A Appl Sci Manuf, 2019, 117: 324-331.

[31]

Xiao Z, Chen H, Mai C, Militz H, Xie Y. Coating performance on glutaraldehyde-modified wood. J For Res, 2019, 30(1): 353-361.

[32]

Yaddanapudi HS, Hickerson N, Saini S, Tiwari A. Fabrication and characterization of transparent wood for next generation smart building applications. Vacuum, 2017, 146: 649-654.

[33]

Yu Z, Yao Y, Yao J, Zhang L, Chen Z, Gao Y, Luo H. Transparent wood containing CsxWO3 nanoparticles for heat-shielding window applications. J Mater Chem A, 2017, 5(13): 6019-6024.

[34]

Zhang DH, Chen YK, Jia DM. Toughness and reinforcement of diglycidyl ether of bisphenol-a by hyperbranched poly(trimellitic anhydride-butanediol glycol) ester epoxy resin. Polym Compos, 2009, 30(7): 918-925.

[35]

Zhu M, Song J, Li T, Gong A, Wang Y, Dai J, Yao Y, Luo W, Henderson D, Hu L. Highly anisotropic, highly transparent wood composites. Adv Mater, 2016, 28(26): 5181-5187.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/