Morphophysiological responses of forest seedling species subjected to different water regimes

Adriana Maria Griebeler , Maristela Machado Araujo , Felipe Manzoni Barbosa , Paula Letícia Kettenhuber , Luciana Samuel Nhantumbo , Álvaro Luís Pasquetti Berghetti , Luciano Denardi

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (5) : 2099 -2110.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (5) : 2099 -2110. DOI: 10.1007/s11676-020-01200-z
Original Paper

Morphophysiological responses of forest seedling species subjected to different water regimes

Author information +
History +
PDF

Abstract

Water availability is a limiting factor for the establishment and development of forest species. To understand the appropriate conditions for the initial post-transplanting phase, it is necessary to understand the specific morphophysiological characteristics of the species, such as the leaf water potential and the efficiency of photosystem II. We aimed to identify the influence of different water regimes on the morphophysiological aspects of young plants of two forest species (Cedrela fissilis Vellozo and Eucalyptus saligna Sm.). Two greenhouse experiments were conducted for 28 days; one for each species. The design was completely randomized, and the treatments consisted of six different water regimes. Leaf water potential (Ψw) and chlorophyll a fluorescence were evaluated every 7 days. At the end of the experiment, morphological attributes (height, collection diameter, root volume, and dry matter) were measured and histological blades were made. The water demand of E. saligna was higher than that of C. fissilis and required greater replacement within a shorter period. The rehydration from Ψw = − 2 Mpa allowed for a fast recovery of the young C. fissilis plants (Ψw = − 1.5, Fv/Fm = 0.796), which indicated good physiological plasticity of this species when submitted to water stress at a level that is not severe. The total dry matter allocation was different among species. Seedlings of E. saligna presented the best responses when submitted to a continuous water supply regime, while C. fissilis seedlings presented the best response under intermittent irrigation conditions.

Keywords

Leaf water potential / Chlorophyll fluorescence / Irrigation / Cedrela fissilis Vellozo / Eucalyptus saligna Sm

Cite this article

Download citation ▾
Adriana Maria Griebeler, Maristela Machado Araujo, Felipe Manzoni Barbosa, Paula Letícia Kettenhuber, Luciana Samuel Nhantumbo, Álvaro Luís Pasquetti Berghetti, Luciano Denardi. Morphophysiological responses of forest seedling species subjected to different water regimes. Journal of Forestry Research, 2020, 32(5): 2099-2110 DOI:10.1007/s11676-020-01200-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alvares CA, Stape JL, Sentelhas PC, de Moraes JLG, Sparovek G. Köppen’s climate classification map for Brazil. Meteorol Z, 2013, 22(6): 711-728.

[2]

Araújo SAC, Deminicis BB. Fotoinibição da fotossíntese. Rev Bras Biociênc, 2009, 7(4): 464-472.

[3]

Araujo MM, Navroski MC, Schorn LA, Tabaldi LA, Rorato DG, Turchetto F, Zavistanovicz TC, Berghetti ÁLP, Aimi SC, da Tonetto TS, Gasparin E, Kelling MB, Ávila AL, Dutra AF, Mezzomo JC, Gomes, Griebeler AM, da Silva MR, Barbosa FM, de Lima MS. Araujo MM, Navroski MC, Schorn LA. Caracterização e análise de atributos morfológicos e fisiológicos indicadores da qualidade de mudas em viveiro florestal. Produção de sementes e mudas um enfoque à silvicultura, 2018 1 Santa Maria: editoraufsm 345 365

[4]

Baker NR. A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol Plant, 1991, 81(4): 563-570.

[5]

Benincasa MMP. Análise de crescimento de plantas (noções básicas), 1998, FUNEP: Jaboticabal 41

[6]

Berghetti ÁLP, Araujo MM, Tabaldi LA, Rorato DG, Aimi SC, de Fárias JG. Growth and physiological attributes of cordia trichotoma seedlings in response to fertilization with phosphorus and potassium. Floresta, 2019, 49(1): 133-142.

[7]

Burger LM, Richter HG. Anatomia da Madeira, 1991, São Paulo: Nobel 154

[8]

Chou SC, Lyra A, Mourão C, Dereczynski C, Pilotto I, Gomes J, Bustamante J, Tavares P, Silva A, Rodrigues D, Campos D, Chagas D, Sueiro G, Siqueira G, Marengo J. Assessment of Climate Change over South America under RCP 4.5 and 8.5 Downscaling Scenarios. Am J Clim Chang, 2014, 3(1): 512-527.

[9]

Condon AG, Richards RA, Rebetzke GJ, Farquhar GD. Improving intrinsic water-use efficiency and crop yield. Crop Sci, 2002, 42(1): 122-131.

[10]

Coradin L, Siminski A, Reis A. Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro - Região Sul, 2011, Brasília: MMA 936

[11]

Cordeiro YEM, Pinheiro HA, dos Santos Filho BG, Corrêa SS, Silva JR, Dias-Filho MB. Physiological and morphological responses of young mahogany (Swietenia macrophylla King) plants to drought. For Ecol Manag, 2009, 258(7): 1449-1455.

[12]

da Silva W, Sediyama T, da Silva AA, Cardoso AA. Índice de consumo e eficiência do uso da água em eucalipto, submetido a diferentes teores de água em convivência com braquiária. Floresta, 2004, 34: 325-335.

[13]

de Campelo DH, Lacerda CF, Sousa JA, Correia DB, Araújo AME, Neves JDM, Rocha AL. Trocas gasosas e eficiência do fotossistema ii em plantas adultas de seis espécies florestais em função do suprimento de água no solo. Rev Árvore, 2015, 39(5): 973-983.

[14]

Deeba F, Pandey AK, Ranjan S, Mishra A, Singh R, Sharma YK, Pandey V. Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol Biochem, 2012, 53: 6-18.

[15]

do Nascimento HHC, Nogueira RJMC, da Silva EC, da Silva MA. Análise do crescimento de mudas de jatobá (Hymenaea courbaril L.) em diferentes níveis de água no solo. Rev Árvore, 2011, 35: 617-626.

[16]

Embrapa EBDPA (2013) Sistema brasileiro de classificação de solos, p 363

[17]

Figueirôa JM, Barbosa DCA, Simabukuro EA. Crescimento de plantas jovens de Myracrodruon urundeuva Allemão (Anacardiaceae) sob diferentes regimes hídricos. Acta Bot Bras, 2004, 18: 572-580.

[18]

Flexas J, Medrano H. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot, 2002, 89: 183-189.

[19]

Flexas J, Bota J, Galmés J, Medrano H, Ribas-Carbó M. Keeping a positive carbon balance under adverse conditions: Responses of photosynthesis and respiration to water stress. Physiol Plant, 2006, 127(3): 343-352.

[20]

Gonçalves JLM, Stape JL, Laclau JP, Bouillet JP, Ranger J. Assessing the effects of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations: the Brazilian experience. South For J For Sci, 2008, 70(2): 105-118.

[21]

Grossnickle SC. Why seedlings survive: influence of plant attributes. New For, 2012, 43: 711-738.

[22]

Grossnickle SC, MacDonald JE. Why seedlings grow: influence of plant attributes. New For, 2018, 49: 1-34.

[23]

Hatfield JL, Dold C. Water-use efficiency: advances and challenges in a changing climate. Front Plant Sci, 2019, 10: 1-14.

[24]

Hodecker BER, Pita-Barbosa A, de Barros NF, Merchant A. Water availability preceding long-term drought defines the tolerance of Eucalyptus to water restriction. New For, 2018, 49: 173-195.

[25]

IBA (2018) Árvores Plantadas. In: indústria Bras. árvores. https://www.iba.org/arvores-plantadas. Accessed 12 Nov 19

[26]

Jafarnia S, Akbarinia M, Hosseinpour B, Modarres Sanavi SAM, Salami SA. Effect of drought stress on some growth, morphological, physiological, and biochemical parameters of two different populations of Quercus brantii. IForest, 2018, 11(2): 212-220.

[27]

Kramer PJ, Boyer JS. Water relations of plants and soils, 1995, New York: Academic Press.

[28]

Lage-Pinto F, Bernini E, de Oliveira JG, Vitória AP. Photosynthetic analyses of two native Atlantic Forest species in regenerative understory of eucalyptus plantation. Braz J Plant Physiol, 2012, 24: 95-106.

[29]

Leiva MJ, Pérez-Romero JA, Mateos-Naranjo E. The effect of simulated damage by weevils on Quercus ilex subsp. Ballota acorns germination, seedling growth and tolerance to experimentally induced drought. For Ecol Manag, 2018, 409: 740-748.

[30]

Liu Y, Bai SL, Zhu Y, Li GL, Jiang P. Promoting seedling stress resistance through nursery techniques in China. New For, 2012, 43(5–6): 639-649.

[31]

Longue Júnior D, Colodette JL. Importância e versatilidade da madeira de eucalipto para a indústria de base florestal. Pesqui Florest Bras, 2013, 33: 129-438.

[32]

Madani N, Kimball JS, Ballantyne AP, Affleck DL, Van Bodegom PM, Reich PB, Zhao M. Future global productivity will be affected by plant trait response to climate. Sci Rep, 2018, 8(1): 1-10.

[33]

Mady FTM. Técnicas para Microscopia da Madeira, 2007, Manaus: Editora da Universidade Federal do Amazonas (EDUA) 80

[34]

Martinelli G, Moraes M (2013) Livro vermelho da flora do Brasil, 1st edn. Rio de Janeiro, p 1100

[35]

Moritz C, Agudo R. The future of species under climate change: resilience or decline?. Science, 2013, 341: 504-508.

[36]

Muellner AN, Pennington TD, Koecke AV, Renner SS. Biogeography of Cedrela (Meliaceae, Sapindales) in Central and South America. Am J Bot, 2010, 97(3): 511-518.

[37]

Noulèkoun F, Lamers JPA, Naab J, Khamzina A. Shoot and root responses of woody species to silvicultural management for afforestation of degraded croplands in the Sudano-Sahelian zone of Benin. For Ecol Manag, 2017, 385: 254-563.

[38]

Otto MSG, Vergani AR, Gonçalves AN, Vrechi A, Silva SR, Stape JL. Fotossíntese, condutância estomática e produtividade de clones de Eucalyptus sob diferentes condições edafoclimáticas. Rev Árvore, 2013, 37(3): 431-439.

[39]

Paludzyszyn Filho E, dos Santos PET (2013) Escolha de cultivares de eucaliptos em função do ambiente e do uso. Colombo, p 11

[40]

Pereira MRR, Klar AE, Melhorança Filho AL, Rodrigues ACP, Da Silva MR. Influência de diferentes condições de solo no desenvolvimento de plantas de Eucalyptus urograndis submetidas a déficit hídrico. Irriga, 2007, 12(4): 519-530.

[41]

Pimentel C. A Relação da Planta com a Água, 2004, Seropédica: Editora Universidade Federal Rural do Rio de Janeiro 190

[42]

Ponpang-Nga P, Techamahasaranont J. Effects of climate and land use changes on water balance in upstream in the Chao Phraya River basin, Thailand. Agric Nat Resour, 2016, 50: 310-320.

[43]

R Core Team (2018) R: a language and environment for statistical computing. https://www.r-project.org/

[44]

Reitz JR (1984) Meliaceae. Itajaí: Flora Ilustrada Catarinense, p 140

[45]

Ritchie GA, Landis TD, Dumroese RK, Haase DL. Landis TD, Dumroese R, Haase D. Assessing plant quality. The container tree nursery manual. volume 7, seedling processing, storage, and outplanting, 2010 7 Washington: U.S. Department of Agriculture Forest Service 19 81

[46]

Sanches MC, Marzinek J, Bragiola NG, Nascimento ART. Morpho-physiological responses in Cedrela fissilis Vell. submitted to changes in natural light conditions: implications for biomass accumulation. Trees, 2017, 31(1): 215-227.

[47]

Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA. Sap pressure in vascular plants. Science, 1965, 148: 339-346.

[48]

Silva P, Campoe O, de Paula R, Lee D. Seedling growth and physiological responses of sixteen eucalypt taxa under controlled water regime. Forests, 2016, 7: 1-13.

[49]

Siqueira SDF, Higuchi P, Silva ACD. Contemporary and future potential geographic distribution of Cedrela fissilis Vell. under climate change scenarios. Rev Árvore, 2019, 43: 3.

[50]

SOCIEDADE BRASILEIRA DE CIÊNCIA DO SOLO (2016) Manual de calagem e de adubação para os Estados do Rio Grande do Sul e de Santa Catarina/Sociedade Brasileira de Ciência do Solo. Comissão de Química e Fertilidade do Solo – RS/SC, p 376

[51]

Taiz L, Zeiger E, Moller IM, Murphy A. Fisiologia e Desenvolvimento Vegetal, 2017 6 Porto Alegre: Artmed 888

[52]

Tatagiba SD, Pezzopane J, Reis EF. Fotossíntese em eucalyptus sob diferentes condições edafoclimáticas. Eng na Agric, 2015, 23: 336-345.

[53]

Turchetto F, Araujo MM, Tabaldi LA, Griebeler A, Rorato DG, Aimi SC, Berghetti ÁLP, Gomes DR. Can transplantation of forest seedlings be a strategy to enrich seedling production in plant nurseries?. For Ecol Manag, 2016, 375: 96-104.

[54]

Urrutia-Jalabert R, Malhi Y, Barichivich J, Lara A, Delgado-Huertas A, Rodríguez CG, Cuq E. Increased water use efficiency but contrasting tree growth patterns in Fitzroya cupressoides forests of southern Chile during recent decades. J Geophys Res Biogeosci, 2015, 120(12): 2505-2524.

[55]

Whitehead D, Beadle CL. Physiological regulation of productivity and water use in Eucalyptus: a review. For Ecol Manag, 2004, 193: 113-140.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/