Diversity and surge in abundance of native parasitoid communities prior to the onset of Torymus sinensis on the Asian chestnut gall wasp (Dryocosmus kuriphilus) in Slovenia, Croatia and Hungary

Katarina Kos , Nikola Lacković , George Melika , Dinka Matošević

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (4) : 1327 -1336.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (4) :1327 -1336. DOI: 10.1007/s11676-020-01197-5
Review Article

Diversity and surge in abundance of native parasitoid communities prior to the onset of Torymus sinensis on the Asian chestnut gall wasp (Dryocosmus kuriphilus) in Slovenia, Croatia and Hungary

Author information +
History +
PDF

Abstract

Since the rapid spread of the Asian chestnut gall wasp (ACGW) throughout south-east Europe in the last few years, the possibilities of its control have been increasingly investigated. Due to constraints in available suppression measures in forest stands, biological control is recognized as the most suitable action to lower the abundance of the new invasive pest. Torymus sinensis, as a specialized parasitoid chalcid wasp of ACGW, was introduced to suppress the pest in Italy in 2005, and later in Croatia, Hungary (2014) and Slovenia (2015). We investigated the native parasitoid complex associated with ACGW in Slovenia, Croatia and Hungary over 8 years of sampling. We found 41 species of native parasitoids, eight of which are the first records on ACGW in Europe, adding up to a total of 51 species known to parasitize ACGW. These findings represent a large complex of cynipid-parasitoid fauna. Moreover, the abundance of native parasitoid populations on ACGW have demonstrated a temporal surge between the invasion of a new alien host (ACGW) and the onset of its specialized parasitoid, T. sinensis. Our results indicate that the introduced parasitoid acts as a very successful biocontrol of ACGW, outcompeting native parasitoids. This outcome should be considered as beneficial through the maintenance of ecological balance in affected forest ecosystems.

Keywords

Invasive pest / ACGW / Biological control / Native parasitoids / Torymus sinensis

Cite this article

Download citation ▾
Katarina Kos, Nikola Lacković, George Melika, Dinka Matošević. Diversity and surge in abundance of native parasitoid communities prior to the onset of Torymus sinensis on the Asian chestnut gall wasp (Dryocosmus kuriphilus) in Slovenia, Croatia and Hungary. Journal of Forestry Research, 2020, 32(4): 1327-1336 DOI:10.1007/s11676-020-01197-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aebi A, Schonrogge K, Melika G, Alma A, Bosio G, Quacchia A, Picciau L, Abe Y, Moriya S, Yara K, Seljak G, Stone GN. Ozaki K, Yukwa J, Ohgushi T, Price PW. Parasitoid recruitment to the globally invasive chestnut gall wasp Dryocosmus kuriphilus. Ecology and evolution of galling arthropods and their associates, 2006, Tokyo: Springer 103 121

[2]

Aebi A, Schonrogge K, Melika G, Quacchia A, Alma A, Stone GN. Native and introduced parasitoids attacking the invasive chestnut gall wasp Dryocosmus kuriphilus. EPPO Bull, 2007, 37: 166-171.

[3]

Aebi A, Schönenberger N, Bigler F (2011) Evaluating the use of Torymus sinensis against the chestnut gall wasp Dryocosmus kuriphilus in the Canton Ticino, Switzerland. Agroscope Reckenholz-Tänikon Report

[4]

Al Khatib F, Fusu L, Cruaud A, Gibson G, Borowiec N, Rasplus JY, Ris N, Delvare G. An integrative approach to species discrimination in the Eupelmus urozonus complex (Hymenoptera, Eupelmidae), with the description of 11 new species from the Western Palaearctic. Syst Entomol, 2014, 39: 806-862.

[5]

Al Khatib F, Cruaud A, Fusu L, Genson G, Rasplus JY, Ris N, Delvare G. Multilocus phylogeny and ecological differentiation of the “Eupelmus urozonus species group” (Hymenoptera, Eupelmidae) in the West-Palaearctic. BMC Evolut Biol, 2016, 16: 13.

[6]

Antolin MF, Bjorksten TA, Vaughn TYT. Host-related fitness trade-off in a presumed generalist parasitoid, Diaeretiella rapae (Hymenoptera:Aphidiidae). Ecol Entomol, 2006, 31: 242-254.

[7]

Askew RR, Melika G, Pujade-Villar J, Schönrogge K, Stone GN, Nieves-Aldrey JL. Catalogue of parasitoids and inquilines in cynipid oak galls in the West Palaearctic. Zootaxa, 2013, 3643: 1-133.

[8]

Avtzis DN, Melika G, Matošević D, Coyle DR. The Asian chestnut gall wasp Dryocosmus kuriphilus: a global invader and a successful case of classical biological control. J Pest Sci, 2019, 92: 107-115.

[9]

Boriani M, Molinari M, Bazzoli M. Orthopelma mediator (Thunberg) (Hymenoptera: Ichneumonidae) and the native parasitoid complex of Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae) in Lombardy (Italy). Entomofauna, 2013, 34: 201-204.

[10]

Budroni MA, Loru L, Pantaleoni RA, Rustici M. Effects of an asynchronous alien host on a native host-parasitoid system. Ecol Complex, 2018, 33: 84-92.

[11]

Colombari F, Battisti A. Native and introduced parasitoids in the biocontrol of Dryocosmus kuriphilus in Veneto (Italy). EPPO Bull, 2016, 46: 275-285.

[12]

Desneux N, Barta ERJ, Hoelmer EKA, Hopper EKR, Heimpel EGE. Multifaceted determinants of host specificity in an aphid parasitoid. Oecologia, 2009, 160: 387-398.

[13]

Doğanlar M. Review of Palearctic and Australian species of Bootanomyia Girault 1915 (Hymenoptera: Torymidae: Megastigminae), with descriptions of new species. Turk J Zool, 2011, 35: 123-157.

[14]

EPPO. Dryocosmus kuriphilus. EPPO Bull, 2005, 35: 422-424.

[15]

Ferracini C, Alma A. Evaluation of the community of native eulophid parasitoids on Cameraria ohridella Deschka and Dimic in urban areas. Environ Entomol, 2007, 36: 1147-1153.

[16]

Ferracini C, Bertolino S, Bernardo U, Bonsignore CP, Faccoli M, Ferrari E, Lupi D, Maini S, Mazzon L, Nugnes F, Rocco A, Santi F, Tavella L. Do Torymus sinensis (Hymenoptera: Torymidae) and agroforestry system affect native parasitoids associated with the Asian chestnut gall wasp?. Biol Control, 2018, 121: 36-43.

[17]

Ferracini C, Ferrari E, Pontini M, Saladini MA, Alma A. Effectiveness of Torymus sinensis: a successful long-term control of the Asian chestnut gall wasp in Italy. J Pest Sci, 2019, 92: 353-359.

[18]

Francati S, Alma A, Ferracini C, Pollini A, Dindo ML. Indigenous parasitoids associated with Dryocosmus kuriphilus in a chestnut production area of Emilia Romagna (Italy). Bull Insectol, 2015, 68: 127-134.

[19]

Fusu L. A revision of the Palaearctic species of Reikosiella (Hirticauda) (Hymenoptera, Eupelmidae). Zootaxa, 2013, 3636: 1-34.

[20]

Fusu L. An integrative taxonomic study of European Eupelmus (Macroneura) (Hymenoptera: Chalcidoidea: Eupelmidae), with a molecular and cytogenetic analysis of Eupelmus (Macroneura) vesicularis: several species hiding under one name for 240 years. Zool J Linn Soc, 2017, 181: 519-603.

[21]

Gibson GAP, Fusu L. Revision of the palaearctic species of Eupelmus (Eupelmus) Dalman (Hymenoptera: Chalcidoidea: Eupelmidae). Zootaxa, 2016, 4081: 001-331.

[22]

Godfray HCJ. Parasitoids behavioral and evolutionary ecology, 1994, Princeton: Princeton University Press Books 488

[23]

Goulet H, Huber JT. Hymenoptera of the world: an identification guide to families, 1993, Ottawa, Ontario: Agriculture Canada 680

[24]

Grabenweger G, Kehrli P, Zweimuller I, Augustin S, Avtzis N, Bacher S, Freise J, Girardoz S, Guichard S, Heitland W, Lethmayer C, Stolz M, Tomov R, Volter L, Kenis M. Temporal and spatial variations in the parasitoid complex of the horse chestnut leafminer during its invasion of Europe. Biol Invasions, 2010, 12: 2797-2813.

[25]

Hall RW. Wrensch DL, Ebbert MA. Alteration of sex ratios of parasitoids for use in biological control. Evolution and diversity of sex ratio in insects and mites, 1993, New York: Chapman & Hall 542 547

[26]

Heimpel GE, Mills NJ. Biological control: ecology and applications, 2017, Cambridge: Cambridge University Press.

[27]

Henry LM, Roitbergand BD, Gillespie DR. Host-range evolution in Aphidius parasitoids: fidelity, virulence and fitness trade-offs on an ancestral host. Evolution, 2008, 62: 689-699.

[28]

Ives A, Carpenter S. Stability and diversity of ecosystems. Science, 2007, 317: 58-62.

[29]

Janšta P, Cruaud A, Delvare G, Genson G, Heraty J, Křižkova B, Rasplus JY. Torymidae (Hymenoptera, Chalcidoidea) revised: molecular phylogeny, circumscription and reclassification of the family with discussion of its biogeography and evolution of life-history traits. Cladistics, 2017, 34: 627-651.

[30]

Jara-Chiquito JL, Heras J, Pujade-Villar J. Primeros datos de reclutamiento de himenópteros parasitoides autóctonos para Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae) en Cataluña (Península Ibérica). Bol SEA, 2016, 59: 219-226.

[31]

Jurc M, Mihajlović L, Fernández MF, Borkovič D (2013) Differences in occurrence of Dryocosmus kuriphilus parasitoids depend on time on chestnut gallwasp introduction to Slovenia and Spain. In: Radócz L (ed) Proceedings of II. European Congress on Chestnut, Debrecen, Hungary, pp 9‒12

[32]

Jurc M, Bojović S, Jurc D. Non-native insects in urban and forest areas of Slovenia and the introduction of Torymus sinensis with Dryocosmus kuriphilus. Open J For, 2017, 07(04): 416-427.

[33]

Kos K, Kriston E, Melika G. Invasive chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera: Cynipidae) its native parasitoid community and its association with oak gall wasps in Slovenia. Eur J Entomol, 2015, 112: 698-704.

[34]

Kos K, Melika G, Celar FA (2017) Native parasitoids of Chestnut gall wasp (Dryocosmus kuriphilus Yasumatsu) and other cynipids in Slovenia (2010‒2016). In: Trdan S (ed) Lectures and papers presented at the 13th Slovenian conference on plant protection with international participation, Rimske Toplice, March 7‒8, pp 206‒211

[35]

Kriston E, Matošević D, Kos K, Seljak G, Bosio G, Quacchia A, Krizbai L, Bozsó M, Csóka G, Melika G (2014) Native parasitoid assemblages of chestnut gallwasp, Dryocosmus kuriphilus (Hym.: Cynipidae) in Europe. In: VII congress on plant protection, Zlatibor (Serbia), pp 24‒28

[36]

Matošević D, Melika G. Recruitment of native parasitoids to a new invasive host: first results of Dryocosmus kuriphilus parasitoid assemblage in Croatia. Bull Insectol, 2013, 66: 231-238.

[37]

Matošević D, Lacković N, Melika G, Kos K, Franić I, Kriston É, Bozsó M, Seljak G, Rot M. Biological control of invasive Dryocosmus kuriphilus with introduced parazitoid Torymus sinensis in Croatia, Slovenia and Hungary. Period Biol, 2015, 4: 471-477.

[38]

Matošević D, Lacković N, Kos K, Kriston É, Melika G, Rot M, Pernek M. Success of classical biocontrol agent Torymus sinensis within its expanding range in Europe. J Appl Entomol, 2017, 141: 758-767.

[39]

Melika G, Matošević D, Kos K, Bosio G, Kriston É, Krizbai L, Bozsó M, Csóka G, Pénzes Z, Quacchia A (2013) Native parasitoids attacking the Chestnut Gallwasp, Dryocosmus kuriphilus (Hymenoptera: Cynipidae), across Italy–Slovenia–Croatia–Hungary. In: II. European congress on chestnut, pp 09‒12

[40]

Moriya S, Inoue K, Mabuchi M (1990) The use of Torymus sinensis (Hymenoptera, Torymidae) for controlling the chestnut gall wasp, Dryocosmus kuriphilus (Hymenoptera, Cynipidae), in Japan. FFTC-NARC International Seminar on The use of parasitoids and predators to control agricultural pests’, p 21

[41]

Noyes JS (2018) Universal Chalcidoidea Database. World Wide Web electronic publication. http://www.nhm.ac.uk/chalcidoids. Accessed 10 December 2018

[42]

Ode PJ, Heinz KM. Host-size-dependent sex ratio theory and improving mass-reared parasitoid sex ratios. Biol Control, 2002, 24: 31-41.

[43]

Ôtake A. Chestnut gall wasp, Dryocosmus kuriphilus YASUMATSU (Hymenoptera: Cynipidae): analyses of records on cell contents inside galls and on emergence of wasps and parasitoids outside galls. Appl Entomol Zool, 1989, 24(52): 193-201.

[44]

Panzavolta T, Bernardo U, Bracalini M, Cascone P, Croci F, Gebiola M. Native parasitoids associated with Dryocosmus kuriphilus in Tuscany, Italy. Bull Insectol, 2013, 66: 195-201.

[45]

Panzavolta T, Croci F, Bracalini M, Tiberi R, Melika G, Benedettelli S, Tellini FG. Population dynamics of native parasitoids associated with the Asian chestnut gall wasp (Dryocosmus kuriphilus) in Italy. Psyche, 2018, 2: 1-13.

[46]

Péré C, Augustin S, Tomov R, Peng L, Turlings TCJ, Kenis M. Species richness and abundance of native leaf miners are affected by the presence of the invasive horse-chestnut leaf miner. Biol Invasions, 2010, 12: 1011-1021.

[47]

Pérez-Otero R, Crespo D, Mansilla JP. Dryocosmus kuriphilus Yasumatsu, 1951 (Hymenoptera: Cynipidae) in Galicia (NW Spain): pest dispersion, associated parasitoids and first biological control attempts. Arq Entomol, 2017, 17: 439-448.

[48]

Quacchia A, Ferracini C, Nicholls JA, Piazza E, Saladini MA, Tota F, Melika G, Alma A. Chalcid parasitoid community associated with the invading pest Dryocosmus kuriphilus in north-western Italy. Insect Conserv Divers, 2013, 6: 114-123.

[49]

Santi F, Maini S. New association between Dryocosmus kuriphilus and Torymus flavipes in chestnut trees in the Bologna area (Italy): first results. Bull Insectol, 2011, 64: 275-278.

[50]

Speranza S, Stacchiotti M, Paparatti B. Endemic parasitoids of Dryocosmus kuriphilus Yasumatsu. (Hymenoptera: Cinipidae) in central Italy. Acta Hortic, 2009, 844: 421-424.

[51]

Stojanović A, Marković C. Parasitoid complex of Cameraria ohridella (Lepidoptera: Gracillariidae) in Serbia. Phytoparasitica, 2004, 32: 132-140.

[52]

Zepeda-Paulo FA, Ortiz-Martínez SA, Figueroa CC, Lavandero B. Adaptive evolution of a generalist parasitoid: implications for the effectiveness of biological control agents. Evol Appl, 2013, 6: 983-999.

[53]

Zerova MD, Seryogina LY. A review of Eurytoma pistaciae species group (Hymenoptera, Eurytomidae), with description of two new species. Vestn Zool, 2009, 43: 31-38.

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/