Epidemiological derivation of flux-based critical levels for visible ozone injury in European forests

Pierre Sicard , Alessandra De Marco , Elisa Carrari , Laurence Dalstein-Richier , Yasutomo Hoshika , Ovidiu Badea , Diana Pitar , Silvano Fares , Adriano Conte , Ionel Popa , Elena Paoletti

Journal of Forestry Research ›› 2020, Vol. 31 ›› Issue (5) : 1509 -1519.

PDF
Journal of Forestry Research ›› 2020, Vol. 31 ›› Issue (5) : 1509 -1519. DOI: 10.1007/s11676-020-01191-x
Original Paper

Epidemiological derivation of flux-based critical levels for visible ozone injury in European forests

Author information +
History +
PDF

Abstract

The European MOTTLES project set-up a new-generation network for ozone (O3) monitoring in 17 plots in France, Italy and Romania. These monitoring stations allowed: (1) estimating the accumulated exposure AOT40 and stomatal O3 fluxes (PODY) with an hourly threshold of uptake (Y) to represent the detoxification capacity of trees (POD1, with Y = 1 nmol O3 m−2 s−1 per leaf area); and (2) collecting data of forest-response indicators, i.e. crown defoliation and visible foliar O3-like injury over the time period 2017–2019. The soil water content was the most important parameter affecting crown defoliation and was a key factor affecting the severity of visible foliar O3-like injury on the dominant tree species in a plot. The soil water content is thus an essential parameter in the PODY estimation, particularly for water-limited environments. An assessment based on stomatal flux-based standard and on real plant symptoms is more appropriated than the exposure-based method for protecting vegetation. From flux-effect relationships, we derived flux-based critical levels (CLef) for forest protection against visible foliar O3-like injury. We recommend CLef of 5 and 12 mmol m−2 POD1 for broadleaved species and conifers, respectively. Before using PODY as legislative standard in Europe, we recommend using the CLec for ≥ 25% of crown defoliation in a plot: 17,000 and 19,000 nmol mol−1 h AOT40 for conifers and broadleaved species, respectively.

Keywords

POD / Critical levels / Ozone / Visible injury / Epidemiology

Cite this article

Download citation ▾
Pierre Sicard, Alessandra De Marco, Elisa Carrari, Laurence Dalstein-Richier, Yasutomo Hoshika, Ovidiu Badea, Diana Pitar, Silvano Fares, Adriano Conte, Ionel Popa, Elena Paoletti. Epidemiological derivation of flux-based critical levels for visible ozone injury in European forests. Journal of Forestry Research, 2020, 31(5): 1509-1519 DOI:10.1007/s11676-020-01191-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agathokleous E, Kitao M, Kinose Y. A review study on ozone phytotoxicity metrics for setting critical levels in Asia. Asian J Atmos Environ, 2018, 12: 1-16.

[2]

Anav A, De Marco A, Proietti C, Alessandri A, Dell’Aquila A, Cionni I Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. Glob Change Biol, 2016, 22: 1608-1627.

[3]

Anav A, Proietti C, Menut L, Carnicelli S, De Marco A, Paoletti E. Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone. Atmos Chem Phys, 2018, 18: 5747-5763.

[4]

Anav A, De Marco A, Friedlingstein P, Savi F, Sicard P, Sitch S Growing season extension affects ozone uptake by European forests. Sci Total Environ, 2019, 669: 1043-1052.

[5]

Araminienė V, Sicard P, Anav A, Agathokleous E, Stakėnas V, De Marco A Trends and inter-relationships of ground-level ozone metrics and forest health in Lithuania. Sci Total Environ, 2019, 658: 1265-1277.

[6]

Braun S, Schindler C, Rihm B. Growth losses in Swiss forests caused by ozone: epidemiological data analysis of stem increment of Fagus sylvatica L. and Picea abies Karst. Environ Pollut, 2014, 192: 129-138.

[7]

Braun S, Schindler C, Rihm B. Growth trends of beech and Norway spruce in Switzerland: the role of nitrogen deposition, ozone, mineral nutrition and climate. Sci Total Environ, 2017, 599–600: 637-646.

[8]

Breiman L. Random Forests. Mach Learn, 2001, 45: 5-32.

[9]

Büker P, Feng Z, Uddling J, Briolat A, Alonso R, Braun S New flux based dose–response relationships for ozone for European forest tree species. Environ Pollut, 2015, 206: 163-174.

[10]

Cailleret M, Ferretti M, Gessler A, Rigling A, Schaub M. Ozone effects on European forest growth-towards an integrative approach. J Ecol, 2018, 106: 1377-1389.

[11]

Calatayud V, Cerveró J. Foliar, physiologial and growth responses of four maple species exposed to ozone. Water Air Soil Pollut, 2007, 185: 239-254.

[12]

Calatayud V, Cerveró J, Calvo E, García-Breijo FJ, Reig-Armiñana J, Sanz MJ. Responses of evergreen and deciduous Quercus species to enhanced levels. Environ Pollut, 2011, 159: 55-63.

[13]

CLRTAP, UNECE Convention on Long-range Transboundary Air Pollution (2017) Mapping critical levels for vegetation”. Chapter III of Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. Accessed on 1st May 2020 www.icpmapping.org.lrtap

[14]

Dalstein L, Vas N, Tagliaferro F, Ferrara AM, Spaziani F. Effets de l’ozone sur la forêt et la végétation dans les Alpes franco-italiennes. Forêt méditerranéenne, 2005, 26: 149-156.

[15]

De Marco A, Sicard P (2019) Why do we still need to derive ozone critical levels for vegetation protection? Opinion paper - IJESNR 21 - October 2019

[16]

De Marco A, Sicard P, Vitale M, Carriero G, Renou C, Paoletti E. Metrics of ozone risks assessment for Southern European forests: canopy moisture content as a potential plant response indicator. Atmos Environ, 2015, 120: 182-190.

[17]

De Marco A, Sicard P, Fares S, Tuovinen JP, Anav A, Paoletti E. Assessing the role of soil water limitation in determining the Phytotoxic Ozone Dose (PODY) thresholds. Atmos Environ, 2016, 147: 88-97.

[18]

De Marco A, Proietti C, Anav A, Ciancarella L, D’Elia I, Fares S Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: insights from Italy. Environ Int, 2019, 125: 320-333.

[19]

Eichhorn J, Roskams P, Potočić N, Timmermann V, Ferretti M, Mues V et al (2016) Part IV: Visual Assessment of Crown Condition and Damaging Agents. In: UNECE ICP Forests Programme Co-ordinating Centre (ed.): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems, Eberswalde, Germany, p 49

[20]

Emberson L, Ashmore MR, Cambridge HM, Simpson D, Tuovinen JP. Modelling stomatal ozone flux across Europe. Environ Pollut, 2000, 109: 403-413.

[21]

European Council Directive 2008/50/EC of the European Parliament and of the council of 21st May 2008 on ambient air quality and cleaner air for Europe. Official Journal L, 152 (2008), pp 1–44

[22]

Fares S, Vargas R, Detto M, Goldstein AH, Karlik J, Paoletti E Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements. Glob Chang Biol, 2013, 19: 2427-2443.

[23]

Feng Z, De Marco A, Anav A, Gualtieri M, Sicard P, Tian H Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ Int, 2019, 131: 104966.

[24]

Fischer R, Lorenz M. Forest Condition in Europe, 2011. Technical Report of ICP Forests and FutMon. Work Report of the Institute for World Forestry 2011/1, 2011, Hamburg: ICP Forests 212

[25]

Fu YH, Piao S, Delpierre N, Hao F, Hänninen H, Liu Y Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Glob Change Biol, 2017, 24: 2159-2168.

[26]

González-Fernández I, Bermejo V, Elvira S, de la Torre D, González A, Navarrete L Modelling ozone stomatal flux of wheat under Mediterranean conditions. Atmos Environ, 2013, 67: 149-160.

[27]

Grulke NE. The physiological basis of ozone injury assessment attributes in Sierran conifers. Dev Environ Sci, 2003, 2: 55-81.

[28]

Günthardt-Goerg MS, Vollenweider P. Linking stress with macroscopic and microscopic leaf response in trees: new diagnostic perspectives. Environ Pollut, 2007, 147: 467-488.

[29]

Hoshika Y, Watanabe M, Kitao M, Häberle KH, Grams TEE, Koike T Ozone induces stomatal narrowing in European and Siebold’s beeches: a comparison between two experiments of free-air ozone exposure. Environ Pollut, 2015, 196: 527-533.

[30]

Hoshika Y, Fares S, Savi F, Gruening C, Goded I, De Marco A Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests. Agric For Meteorol, 2017, 234: 212-221.

[31]

Hoshika Y, Carrari E, Zhang L, Carriero G, Pignatelli S, Fasano G, Materassi A, Paoletti E. Testing a ratio of photosynthesis to O3 uptake as an index for assessing O3–induced foliar visible injury in poplar trees. Environ Sci Pollut Res, 2018, 25: 8113-8124.

[32]

Karlsson PE, Örlander G, Langvall O, Uddling J, Hjorth U, Wiklander K Negative impact of ozone on the stem basal area increment of Norway spruce in south Sweden. For Ecol Manag, 2006, 232: 146-151.

[33]

Karlsson PE, Braun S, Broadmeadow M, Elvira S, Emberson L, Gimeno BS Risk assessments for forest trees: the performance of the ozone flux versus the AOT40 concepts. Environ Pollut, 2007, 146: 608-616.

[34]

Lefohn A, Malley C, Smith L, Wells B, Hazucha M, Simon H Tropospheric ozone assessment report: global ozone metrics for climate change, human health, and crop/ecosystem research. Elem Sci Anth, 2018, 6: 28.

[35]

Matyssek R, Bytnerowicz A, Karlsson PE, Paoletti E, Sanz M, Schaub M Promoting the O3 flux concept for European forest trees. Environ Pollut, 2007, 146: 587-607.

[36]

Mills G, Pleijel H, Braun S, Büker P, Bermejo V, Calvo E New stomatal flux-based critical levels for ozone effects on vegetation. Atmos Environ, 2011, 45: 5064-5068.

[37]

Mills G, Pleijel H, Malley CS, Sinha B, Cooper OR, Schultz MG Tropospheric ozone assessment report: present-day tropospheric ozone distribution and trends relevant to vegetation. Elem Sci Anth, 2018, 6: 47.

[38]

Moura BB, Alves ES, Marabesi MA, Ribeiro de Souza S, Schaub M, Vollenweider P. Ozone affects leaf physiology and causes injury to foliage of native tree species from the tropical Atlantic Forest of southern Brazil. Sci Total Environ, 2018, 610–611: 912-925.

[39]

Musselman RC, Lefohn A, Massman WJ, Heath R. A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. Atmos Environ, 2006, 40: 1869-1888.

[40]

National Emission Ceilings Directive (2016) Directive 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC. In: EC Official Journal of the European Union L. 344 of 17.12.2016

[41]

Ochoa-Hueso R, Munzi S, Alonso R, Arróniz-Crespo M, Avila A, Bermejo V Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: current research and future directions. Environ Pollut, 2017, 227: 194-206.

[42]

Paoletti E, Manning WJ. Toward a biologically significant and usable standard for ozone that will also protect plants. Environ Pollut, 2007, 150: 85-95.

[43]

Paoletti E, Contran N, Bernasconi P, Günthardt-Goerg MS, Vollenweider P. Structural and physiological responses to ozone in Manna ash (Fraxinus ornus L.) leaves in seedlings and mature trees under controlled and ambient conditions. Sci Total Environ, 2009, 407: 1631-1643.

[44]

Paoletti E, Alivernini A, Anav A, Badea O, Carrari E, Chivulescu S Toward stomatal-flux based forest protection against ozone: the MOTTLES approach. Sci Total Environ, 2019, 691: 516-527.

[45]

Proietti C, Anav A, De Marco A, Sicard P, Vitale M. A multi-sites analysis on the ozone effects on Gross Primary Production of European forests. Sci Total Environ, 2016, 556: 1-11.

[46]

Schaub M, Calatayud V, Ferretti M, Brunialti G, Lövblad G, Krause G et al. (2010) Monitoring of Ozone Injury. Manual Part X, 22 pp. In: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE ICP Forests Programme, Hamburg. ISBN: 978-3-926301-03-1

[47]

Schaub M, Calatayud V, Ferretti M, Brunialti G, Lövblad G, Krause G et al. (2016) Part VIII: monitoring of ozone injury. In: UNECE ICP Forests Programme Coordinating Centre (ed) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems, Eberswalde, Germany, 14 pp

[48]

Sicard P, Dalstein-Richier L. Health and vitality assessment of two common pine species in the context of climate change in Southern Europe. Environ Res, 2015, 137: 235-245.

[49]

Sicard P, De Marco A, Troussier F, Renou C, Vas N, Paoletti E. Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmos Environ, 2013, 79: 705-715.

[50]

Sicard P, Serra R, Rossello P. Spatio-temporal trends of surface ozone concentrations and metrics in France. Environ Res, 2016, 149: 122-144.

[51]

Sicard P, Augustaitis A, Belyazid S, Calfapietra C, De Marco A, Fenn M Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems. Environ Pollut, 2016, 213: 977-987.

[52]

Sicard P, De Marco A, Dalstein-Richier L, Tagliaferro F, Paoletti E. An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests. Sci Total Environ, 2016, 541: 729-741.

[53]

Sicard P, Anav A, De Marco A, Paoletti E. Projected global tropospheric ozone impacts on vegetation under different emission and climate scenarios. Atmos Chem Phys, 2017, 17: 12177-12196.

[54]

Sicard P, Paoletti E Agathokleous E, Araminienė V, Proietti C, Coulibaly F et al. (2020) Ozone weekend effect in cities: Deep insights for urban air pollution control. Environ Res (in press)

[55]

UNECE, United Nations Economic Commission for Europe (2010) Mapping critical levels for vegetation. Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads & Levels and Air Pollution Effects, Risks and Trends, United Nations Economic Commission for Europe (UNECE) Convention on Long range Transboundary Air Pollution, Geneva, 254 pp

[56]

Vitale M, Proietti C, Cionni I, Fischer R, De Marco A. Random forests analysis: a useful tool for defining the relative importance of environmental conditions on crown defoliation. Water Air Soil Pollut, 2014, 225: 1992.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/