Termite-killing components in Serratia marcescens (SM1)

Renjie Fu , Jian Luo , Kai Feng , Xiaoyu Lu , Fang Tang

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (4) : 1739 -1744.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (4) : 1739 -1744. DOI: 10.1007/s11676-020-01172-0
Original Paper

Termite-killing components in Serratia marcescens (SM1)

Author information +
History +
PDF

Abstract

The bacteria, Serratia marcescens (SM1) was previously obtained from the black-winged termite, Odontotermes formosanus Shiraki. SM1 was highly toxic to O. formosanus, however, the mechanism of toxicity is unclear. In this study, toxicity test results showed that the main components that affected O. formosanus were in a supernatant and that the insecticidal protease in the supernatant resulted in the death of O. formosanus. In addition, zinc sulphate recovery experiments indicated that the metalloproteinases in the supernatant were more harmful. These results provide a theoretical foundation for the future biological control of termites, the basis for the development of pest control technology and the discovery of new pesticides.

Keywords

Odontotermes formosanus Shiraki / Serratia marcescens strain SM1 / Supernatant / Protease / Metalloproteinases

Cite this article

Download citation ▾
Renjie Fu, Jian Luo, Kai Feng, Xiaoyu Lu, Fang Tang. Termite-killing components in Serratia marcescens (SM1). Journal of Forestry Research, 2020, 32(4): 1739-1744 DOI:10.1007/s11676-020-01172-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aggarwal C, Paul S, Tripathi V, Paul B, Khan MA. Characterization of putative virulence factors of Serratia marcescens strain SEN for pathogenesis in Spodoptera litura. J Invertebr Pathol, 2017, 143: 115-123.

[2]

Barloy F, Lecadet MM, Delécluse A. Cloning and sequencing of three new putative toxin genes from Clostridium bifermentans CH18. Gene, 1998, 211(2): 293-299.

[3]

Bowen D, Rocheleau TA, Blackburn M, Andreev O, Golubeva E, Bhartia R, Ffrench-Constant RH. Insecticidal toxins from the bacterium Photorhabdus luminescens. Science, 1998, 280: 2129-2132.

[4]

Chen XW, Fan H, Zhou K, Lan HX, Sun BZ. Study on the toxicity of Serratia marcescens to the common vegetable insects. Tianjin Agric Sci, 2005, 11: 5-7.

[5]

Cosme L, Turchen LM, Guedes RNC. Chemical constituents of tropical woods and resistance to the invasive drywood termite Cryptotermes brevis. J Appl Entomol, 2020

[6]

Dahlsjo CAL, Romero CSV, Iniguez CIE. Termite diversity in ecuador: a comparison of two primary forest national parks. J Insect Sci, 2020

[7]

Djuideu TCL, Bisseleua DHB, Kekeunou S, Meupia MJ, Difouo FG, Ambele CF. Plant community composition and functional characteristics define invasion and infestation of termites in cocoa agroforestry systems. Agrofor Syst, 2020, 94(1): 185-201.

[8]

Du H, Tong RL, Huang XY, Liu BR, Huang RM, Li ZQ. Methoprene-induced genes in workers of Formosan subterranean termites (Coptotermes formosanus Shiraki). Insects, 2020

[9]

Forst S, Dowds B, Boemare N, Stackebrandt E. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol, 1997, 51: 47-72.

[10]

Fu RJ, Qi XL, Feng K, Xia XR, Tang F. Identification and characteristics of a strain of Serratia marcescens isolated from the termites, Odontotermes formosanus. J Nanjing For Univ Nat Sci Ed, 2019, 43(1): 76-82.

[11]

Fu RJ, Zhou LX, Feng K, Lu XY, Luo J, Tang F. Effects of Serratia marcescens (SM1) and its interaction with common biocontrol agents on the termite, Odontotermes formosanus. J For Res, 2020

[12]

Hejazi A, Falkiner FR. Serratia marcescens. J Med Microbiol, 1997, 46(11): 903-912.

[13]

Hu ZH, Fang WW, Zhou XT, He W. Killing effect of secondary metabolites of Serratia marcescens on Bursaphelenchus xylophilus. Jiangsu Agric Sci, 2017, 45(19): 183-186.

[14]

Jin H, Ge SR, Tao Y, Ran HY, Liu SG. Identification of a pathogenic strain of locusts and its toxicity and pathology. Acta Microbiol Sin, 2005, 45: 172-176.

[15]

Li XS, Zeng JD, Lu BS, Xiao JJ. Insecticidal effectivity of bacillus sphaericus to main daqu insect Alphitobius diaperinus Panzer. Agrochemicals, 2008, 47(3): 217-218.

[16]

Liu J, Wang SW, Zhao K, Zhou DP. Status quo and advances in bio-controlling termites. J Microbiol, 2010, 30(2): 91-94.

[17]

McGaughey WH, Gould F, Gelernter W. Bt resistance management. Nat Biotechnol, 1998, 16(2): 144-146.

[18]

Montaner B, Perez-Tomas R. The prodigiosins: a new family of anticancer drugs. Curr Cancer Drug Targets, 2003, 3(1): 57-65.

[19]

Niu HT, Li LY, Liu BS, Guo HF. Effect of temperature on pathogenicity of Serratia marcescens S-JS1 against Spodoptera exigua and Spodoptera litura. Southwest China J Agric Sci, 2015, 28(6): 2516-2520.

[20]

Niu HT, Xiao LJJ, Wang N, Liu BS, Yu TC, Guo HF. Combined effects of Serratia marcescens S-JS1 with five insecticides against Laodelphax striatellus and the effect of S-JS1 on activities of relative enzymes in L. striatellus. Chin J Pestic Sci, 2018, 20(2): 185-191.

[21]

Patil CD, Patil SV, Salunke BK, Salunkhe RB. Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitol Res, 2011, 109: 1179-1187.

[22]

Rajamohan F, Lee MK, Dean DH. Bacillus thuringiensis insecticidal proteins: molecular mode of action. Prog Nucleic Acid Res Mol Biol, 1998, 60: 1-27.

[23]

Regev A, Keller M, Strizhov N, Sneh B, Prudovsky E, Chet I, Ginzberg I, Koncz-Kalman Z, Koncz C, Schell J, Zilberstein A. Synergistic activity of a Bacillus thuringiensis δ-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Environ Microbiol, 1996, 62: 3581-3586.

[24]

Sapkota R, Stout MJ, Henderson G. Residual effects of termiticides on mortality of Formosan subterranean termite (Isoptera: Rhinotermitidae) on substrates subjected to flooding. J Econ Entomol, 2020, 113(1): 367-374.

[25]

Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev, 1998, 62(3): 775-806.

[26]

Smigielski AJ, Akhurst RJ (1995) Toxin gene from Xenorhabdus nematophilus, US005972687A; WO 95/00647

[27]

Tang F, Cui L, Tang JG. Difference in transmission efficiency to pesticides between Odontotermes formosanus (Shiraki) and Reticulitermes chinensis (Snyder). J Nanjing For Univ Nat Sci Ed, 2007, 31(6): 69-72.

[28]

Tao K (2006) Studies on purification, gene cloning and expression of insecticidal protein. Doctoral dissertation. Sichuan University, Chengdu, China

[29]

Volgyi A, Fodor A, Szentirmai A, Forst S. Phase variation in Xenorhabdus nematophilus. Appl Environ Microbiol, 1998, 64(4): 1188-1193.

[30]

Xu HG, Peng HY. Delayed effects of chitinase of Serratia marcesens S3 on Helicoverpa armigera in different instars. Acta Microbiol Sin, 2004, 44: 88-92.

[31]

Yang JY, Ji CY, Ling B, Zhang MX. Isolation and identification of bacteria from Phyllotreta striolata (Fabricius) and determination of its insecticidal bioactivity. Chin J Biol Control, 2014, 30(3): 434-440.

[32]

Yin HX, Zhang J, Hou RT, Wang JD, Yang ZR. Isolation and identification of a chitinase-producing bacterium and its synergistic effect on locust biocontrol. Plant Prot, 2004, 30: 37-41.

[33]

Zhang YJ, Tan J, Lin YQ. The effects on peritrophic membranes of Helicoverpa armigera treated by low temperature and chitinase. Chin J Biol Control, 2000, 16: 152-155.

[34]

Zhang J, Qin WQ, Yan W, Peng ZQ. Isolation and identification of a pathogenic strain of Rhynchophorus ferrugineus Oliver. Chin J Trop Crops, 2011, 32(12): 2331-2335.

[35]

Zhang XW, Ji BZ, Liu SW, Cao DD, Yang JJ, Liu JJ, Ji SL, Soleymaninejadian E, Wang HJ. Research progress inanatomic structures of digestive system and symbiotes in termites. J Nanjing For Univ Nat Sci Ed, 2015, 39(1): 155-161.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/