Distribution of Malpighia mexicana in Mexico and its implications for Barranca del Río Santiago

Martín Tena Meza , Rafael Ma. Navarro-Cerrillo , Diego Brizuela Torres

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (3) : 1095 -1103.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (3) : 1095 -1103. DOI: 10.1007/s11676-020-01157-z
Original Paper

Distribution of Malpighia mexicana in Mexico and its implications for Barranca del Río Santiago

Author information +
History +
PDF

Abstract

Wild plants represent relatively unexplored resource of high economic potential, especially as an alternative to developing new crops and, even more relevant, for improving existing crops and contributing to nutrition and health. The wild species Malpighia mexicana (manzanita) has a wide tradition of food, medicinal and ornamental use in Mexico. It is part of the American-origin group of tropical shrubs that produce edible red fruits, such as Acerola, which is considered the most important natural source of vitamin C in the world. Given the role played by M. mexicana in Mexico, and particularly in Barranca del Río Santiago (Santiago River Canyon), we modelled its potential distribution in both geographical areas. We used species’ records from databases, local herbaria and records collected by the authors as well as climatic variables representing long term average, variability and extreme conditions of temperature and precipitation. To fit the models we used the modelling algorithm Maxent and selected an adequate configuration by testing a range of model complexity settings. The results indicate a clear species preference for warm-dry tropical forest, most extensively in the Balsas river depression and the central valleys of Oaxaca. The probability of the species presence in the western region was also high, although the probability was also high for smaller surface areas, such as the region of Santiago river canyons, which are covered by warm-dry tropical forests.

Keywords

Malpighia mexicana / Maxent / Warm-dry tropical forest / Río Santiago / Genetic resources / Ecological niche model / Manzanita

Cite this article

Download citation ▾
Martín Tena Meza, Rafael Ma. Navarro-Cerrillo, Diego Brizuela Torres. Distribution of Malpighia mexicana in Mexico and its implications for Barranca del Río Santiago. Journal of Forestry Research, 2020, 32(3): 1095-1103 DOI:10.1007/s11676-020-01157-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson W. Origins of Mexican Malpighiaceae. Acta Botánica Mexicana, 2013, 104: 107-156.

[2]

Anderson R, Anderson C, Davis C (2006) Malpighiaceae. https://webapps.lsa.umich.edu/herbarium/malpigh/index.html. Accessed 23 June 2017

[3]

Asenjo C. Aspectos químicos y nutritivos de la acerola (Malpighia punicifolia L.). Revista hispano-americana de ciencias puras y aplicadas, 1959, 19(6/7): 109-118.

[4]

Avilés-Peraza G (2016) El género Malpighia en la porción mexicana de la Península de Yucatán. Desde el Herbario CICY 8:189–192. Centro de Investigación Científica de Yucatán A.C. http://www.cicy.mx/sitios/desde_herbario/. Accessed 30 July 2017

[5]

Bárcenas-López L (2018). Anatomía Radicular, Caulinar y Foliar en Malpighia mexicana A. Juss., en el estado de México. Tesis Doctorado en Ciencias Agropecuarias y Recursos Naturales. Universidad Autónoma del Estado de México, México, pp 27–54

[6]

Bárcenas-López L, Montaño-Arias S, López Sandoval J, González A, Rubí-Arriaga M, Vargas G. Foliar anatomy of Malpighia mexicana (Malpighiaceae). Acta Botanica Mexicana, 2019, 126: e404.

[7]

Belwal T, Prasad H, Hassan H, Ahluwalia S, Fawzy M, Mocan A, Atanasov A. Phytopharmacology of Acerola (Malpighia spp.) and its potential as functional food. Trends Food Sci Technol, 2018, 74: 99-106.

[8]

Boria RA, Olson LE, Goodman SM, Anderson RP. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model, 2014, 275: 73-77.

[9]

Cáceres A, López B, Juárez X, del Aguila J, García S. Plants used in Guatemala for the treatment of dermatophytic infections. 2. Evaluation of antifungal activity of seven American plants. J Ethnopharmacol, 1993, 40: 207-213.

[10]

Colegio de la Frontera Sur (2015) Malpighia mexicana. Fichas de especies. http://geoserv.ecosur.mx/Informe/FichasSp/Malpighia_mexicana.html. Accessed 21 May 2018

[11]

Davis Ch, Anderson A. A complete generic phytogeny of Malpighiaceae inferred from nucleotide sequence data and morphology. Am J Bot, 2010, 97(12): 2031-2048.

[12]

De Rosso V, Mercadante A. Carotenoid composition of two Brazilian genotypes of acerola (Malpighia punicifolia L.) from two harvests. Food Res Int, 2005, 38(8–9): 1073-1077.

[13]

Düsman E, Paim A, Gonçalves R, Benedito N, Düsman L, Pimienta V. Radioprotective effect of the Barbados Cherry (Malpighia glabra L.) against radiopharmaceutical Iodine-131 in Wistar rats in vivo. BMC Complement Altern Med, 2014, 14: 41.

[14]

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib, 2011, 17(1): 43-57.

[15]

Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol, 2017, 37(12): 4302-4315.

[16]

Fitzpatrick MC, Gotelli NJ, Ellison AM. MaxEnt versus MaxLike: empirical comparisons with ant species distributions. Ecosphere, 2013, 4(5): 1-15.

[17]

Fourcade Y, Engler JO, Rödder D, Secondi J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE, 2014 9 5 e97122

[18]

García E (1998a) Climas (clasificación de Koppen, modificado por García). Escala 1:1000000. Portal de Geoinformación. Sistema Nacional de Información sobre Biodiversidad. México. http://www.conabio.gob.mx/informacion/gis/. Accessed 12 June 2018

[19]

García E (1998b) Precipitación total anual. Escala 1:1000000. Portal de Geoinformación. Sistema Nacional de Información sobre Biodiversidad. México. http://www.conabio.gob.mx/informacion/gis/. Accessed 12 June 2018

[20]

GBIF.org. (2018) GBIF occurrence download. https://doi.org/10.15468/dl.ji8rw. Accessed 21 May 2018

[21]

IIEG (Instituto de Información Estadística y Geográfica) (2019) Conjunto de datos vectoriales edafológicos, 1:50,000. Jalisco. https://datos.jalisco.gob.mx/dataset/conjunto-de-datos-vectoriales-edafologicos-150000-jalisco. Accessed 16 Nov 2019

[22]

INEGI, CONABIO, INE (2008) Ecorregiones terrestres de México. Escala 1:1000000. Portal de Geoinformación. Sistema Nacional de Información sobre Biodiversidad. México. http://www.conabio.gob.mx/informacion/gis/. Accessed 12 June 2018

[23]

Johnson P. Acerola (Malpighia glabra L., M. punicifolia L., M. emarginata D.C.): agriculture, production and nutrition. World Rev Nutr Diet, 2003, 91: 67-75.

[24]

Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Cheyne SM. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib, 2013, 19(11): 1366-1379.

[25]

Maldonado-Peralta M, García de los Santos G, García-Nava JR, Torres-Corona T, Cetina-Alcala M, Ramírez-Herrera C. Calidad morfológica de frutos y endocarpios del nanche rojo (Malpighia mexicana), Malpighiaceae. Acta Botanica Mexicana, 2016, 117: 37-46.

[26]

Merow C, Smith MJ, Silander JA. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 2013, 36(10): 1058-1069.

[27]

Miranda F, Hernández-X E. Los tipos de vegetación en México y su clasificación. Bot Sci, 1963, 28: 29-179.

[28]

Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol, 2014, 5(11): 1198-1205.

[29]

Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB. Ecological niches and geographic distributions, 2011, New Jersey: Princeton University Press 314

[30]

Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. Opening the black box: an open-source release of Maxent. Ecography, 2017, 40(7): 887-893.

[31]

Riley SJ, DeGloria SD, Elliot R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt J Sci, 1999, 5(1–4): 23-27.

[32]

Rodríguez-Castañeda JL, Rodríguez-Torres R. Geología estructural y estratigráfica del área entre Guadalajara y Tepic, Estados de Jalisco y Nayarit, México. Revista mexicana de ciencias geológicas, 1992, 10(2): 99-110.

[33]

Rzedowski J, Calderón G. Datos para la apreciación de la flora fanerogámica del bosque tropical caducifolio en México. Acta Botánica Mexicana, 2013, 102: 1-23.

[34]

Rzedowski J, Mcvaugh R. La vegetación de Nueva Galicia. Contrib Univ Mich Herb, 1966, 9: 1-123.

[35]

Soberón J, Osorio-Olvera L, Peterson T. Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución. Revista Mexicana de Biodiversidad, 2017, 88: 437-441.

[36]

Stanley PC. Trees and shrubs of Mexico. Contrib U S Natl Herb, 1920, 23(3): 563-565.

[37]

R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 12 June 2018

[38]

Trejo I. Análisis de la diversidad de la selva baja caducifolia en México. Monografías Tercer Milenio, 2005, 4: 111-122.

[39]

Universidad Nacional Autónoma de México (2009) Biblioteca Digital de la Medicina Tradicional Mexicana. http://www.medicinatradicionalmexicana.unam.mx/index.php. Accessed 29 June 2016

[40]

U.S. GEOLOGICAL SURVEY (USGS) (1996) A global digital elevation Mod-l-GTOP030. https://earthexplorer.usgs.gov/. Accessed 16 Nov 2019

[41]

Varela S, Anderson RP, García-Valdés R, Fernández-González F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography, 2014, 37(11): 1084-1091.

[42]

Warren DL, Seifert SN. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl, 2011, 21(2): 335-342.

AI Summary AI Mindmap
PDF

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/