Species-specific biomass allometric models and expansion factors for indigenous and planted forests of the Mozambique highlands

Tarquinio Mateus Magalhães , Victoria Norberto Cossa , Benard Soares Guedes , Amélia Saraiva Monguela Fanheiro

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (3) : 1047 -1065.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (3) : 1047 -1065. DOI: 10.1007/s11676-020-01156-0
Original Paper

Species-specific biomass allometric models and expansion factors for indigenous and planted forests of the Mozambique highlands

Author information +
History +
PDF

Abstract

Secondary Miombo woodlands and forest plantations occupy increasing areas in Mozambique, the former due to anthropogenic activities. Plantations, mainly species of Eucalyptus and Pinus, are being established on sites previously covered by secondary Miombo woodlands. This affects the evolution, cycle and spatiotemporal patterns of carbon (C) storage and stocks in forest ecosystems. The estimation of C storage, which is indispensable for formulating climate change policies on sequestrating CO2, requires tools such as biomass models and biomass conversion and expansion factors (BCEF). In Mozambique, these tools are needed for both indigenous forests and plantations. The objective of this study is to fit species-specific allometric biomass models and BCEF for exotic and indigenous tree species. To incorporate efficient inter-species variability, biomass equations were fitted using nonlinear mixed-effects models. All tree component biomass models had good predictability; however, better predictive accuracy and ability was observed for the 2-predictors biomass model with tree height as a second predictor. The majority of the variability in BCEF was explained by the variation in tree species. Miombo species had larger crown biomass per unit of stem diameter and stored larger amounts of biomass per stem volume. However, due to relatively rapid growth, larger stem diameters, heights, and stand density, the plantations stored more biomass per tree and per unit area.

Cite this article

Download citation ▾
Tarquinio Mateus Magalhães, Victoria Norberto Cossa, Benard Soares Guedes, Amélia Saraiva Monguela Fanheiro. Species-specific biomass allometric models and expansion factors for indigenous and planted forests of the Mozambique highlands. Journal of Forestry Research, 2020, 32(3): 1047-1065 DOI:10.1007/s11676-020-01156-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akaike H (1973) Information theory and extension of the maximum likelihood principle. In: 2nd International symposium in information theory. Akademiai Kiado, Budapest, pp 267–281

[2]

Annighöfer P, Ameztegui A, Ammer C, Balandier P, Bartsch N, Bolte A, Coll L, Collet C, Ewald J, Frischbier N, Gebereyesus T, Haase J, Hamm T, Hirschfelder B, Huth F, Kändler G, Kahl A, Kawaletz H, Kuehne C, Lacointe A, Lin N, Löf M, Malagoli P, Marquier A, Müller S, Promberger S, Provendier D, Röhle H, Sathornkich J, Schall P, Scherer-Lorenzen M, Schröder J, Seele C, Weidig J, Wirth C, Wolf H, Wollmerstädt J, Mund M. Species-specific and generic biomass equations for seedlings and saplings of European tree species. Eur J For Res, 2016, 135: 313-329.

[3]

Aquino A, Lim C, Kaechele K, Taquidir M (2018) Mozambique Mozambique Country Forest Note. Maputo

[4]

Bervian G, Fontoura NF, Haimovici M. Statistical model of variable allometric growth: Otolith growth in Micropogonias furnieri (Actinopterygii, Sciaenidae). J Fish Biol, 2006, 68: 196-208.

[5]

Bi HQ, Turner J, Lambert MJ. Additive biomass equations for native eucalypt forest tress of temperate Australia. Trees Struct Funct, 2004, 18: 467-479.

[6]

Blid N (2014) Indústria florestal e movimento sindical em Moçambique. Maputo

[7]

Blujdea VNB, Pilli R, Dutca I, Ciuvat L, Abrudan IV. Allometric biomass equations for young broadleaved trees in plantations in Romania. For Ecol Manag, 2012, 264: 172-184.

[8]

Bolte A, Rahmann T, Kuhr M, Pogoda P, Murach D, Gadow KV. Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.). Plant Soil, 2004, 264: 1-11.

[9]

Brown S, Gillespie AJR, Lugo AE. Biomass estimation methods for tropical forests with applications to forest inventory data. For Sci, 1989, 35: 881-902.

[10]

Brown S, Schroeder P, Kern SJ. Spatial distribution of biomass in forests of the eastern USA. For Ecol Manag, 1999, 123: 81-90.

[11]

Calama R, Montero G. Interregional nonlinear height–diameter model with random coefficients for stone pine in Spain. Can J For Res, 2004, 34: 150-163.

[12]

Carvalho JP, Parresol BR. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.). For Ecol Manag, 2003, 179: 269-276.

[13]

Castro I, Casado , Ramirez-sanz L, Migue JM, Costa M, Pineda D. Funciones de estimación de la biomasa aérea de varias especies del matorral mediterráneo del centro de la península Ibérica. Orsis Org i Sist, 1996, 11: 107-116.

[14]

Chambers JQ, dos Santos J, Ribeiro R, Higuchi N. Tree damage, allometric relationships, and aboveground net primary production in a tropical forest. For Ecol Manag, 2001, 152: 73-84.

[15]

Chen DS, Huang XZ, Zhang SG, Sun XM. Biomass modeling of larch (Larix spp.) plantations in China based on the mixed model, dummy variable model, and Bayesian hierarchical model. Forests, 2017, 8: 5-8.

[16]

Chen LC, Guan X, Li HM, Wang QK, Zhang WD, Yang QP, Wang SL. Spatiotemporal patterns of carbon storage in forest ecosystems in Hunan Province, China. For Ecol Manag, 2019, 432: 656-666.

[17]

Chiteculo V, Surovy P. Dynamic patterns of trees species in miombo forest and management perspectives for sustainable production-case study in Huambo Province, Angola. Forests, 2018

[18]

Cienciala E, Černý M, Tatarinov F, Apltauer J, Exnerová Z. Biomass functions applicable to Scots pine. Trees Struct Funct, 2006, 20: 483-495.

[19]

Coll L, Potvin C, Messier C, Delagrange S. Root architecture and allocation patterns of eight native tropical species with different successional status used in open-grown mixed plantations in Panama. Trees Struct Funct, 2008, 22: 585-596.

[20]

Correia AC, Tomé M, Carlos P, Sónia F, Dias A, Freire J, Carvalho PO, Pereira JS. Biomass allometry and carbon factors for a Mediterranean pine (Pinus pinea L.) in Portugal. For Syst, 2010, 19: 418-433.

[21]

Correia AC, Tomé M, Pacheco CA, Faias S, Dias AC, Freire J, Carvalho PO, Pereira JS. Alometría de la biomasa y factores de carbono para un pino Mediterráneo (Pinus pinea L.) en Portugal. For Syst, 2010, 19: 418-433.

[22]

Deng XW, Zhang LY, Lei PF, Xiang WH, Yan WD. Variations of wood basic density with tree age and social classes in the axial direction within Pinus massoniana stems in Southern China. Ann For Sci, 2014, 71: 505-516.

[23]

Dutca I, Abrudan IV, Stancioiu PT, Blujdea V. Biomass conversion and expansion factors for young Norway spruce (Picea abies (L.) Karst.) trees planted on non-forest lands in Eastern Carpathians. Not Bot Hortic Agrobot Cluj-Napoca, 2010, 38: 286-292.

[24]

Elifuraha E, Nöjd P, Mbwambo L. Short term growth of miombo tree species at Kitulangalo. Work Pap Finnish For Res Inst, 2008, 98: 37-45.

[25]

Enquist BJ. Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol, 2002, 22: 1045-1064.

[26]

Fajardo A. Insights into intraspecific wood density variation and its relationship to growth, height and elevation in a treeline species. Plant Biol, 2018, 20: 456-464.

[27]

Fan SH, Guan FX, Xu XL, Forrester DI, Ma W, Tang XL. Ecosystem carbon stock loss after land use change in subtropical forests in China. Forests, 2016

[28]

Fang YR, Zou XJ, Lie ZY, Xue L. Variation in organ biomass with changing climate and forest characteristics across Chinese forests. Forests, 2018, 9: 1-11.

[29]

Fehrmann L, Kleinn C. General considerations about the use of allometric equations for biomass estimation on the example of Norway spruce in central Europe. For Ecol Manag, 2006, 236: 412-421.

[30]

Feng CY, Wang HY, Lu NJ, Chen T, He H, Lu Y, Tu XM. Log-transformation and its implications for data analysis. Shanghai Arch Psychiatry, 2014, 26: 105-109.

[31]

Fournier RA, Luther JE, Guindon L, Lambert MC, Piercey D, Hall RJ, Wulder MA. Mapping aboveground tree biomass at the stand level from inventory information: test cases in Newfoundland and Quebec. Can J For Res, 2003, 33: 1846-1863.

[32]

Fu XL, Shao MA, Wei XR, Horton R. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma, 2010, 155: 31-35.

[33]

Furnival G. An index for comparing equations used in constructing volume tables. For Sci, 1961, 7: 337-341.

[34]

Goussanou CA, Guendehou S, Assogbadjo AE, Kaire M, Sinsin B, Cuni-Sanchez A. Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fenn, 2016, 50: 1-22.

[35]

Grundy IM. Wood biomass estimation in dry miombo woodland in Zimbabwe. For Ecol Manag, 1995, 72: 109-117.

[36]

Guedes BS, Olsson BA, Egnell G, Sitoe AA, Karltun E. Plantations of Pinus and Eucalyptus replacing degraded mountain miombo woodlands in Mozambique significantly increase carbon sequestration. Glob Ecol Conserv, 2018, 14: 1-13.

[37]

Guedes BS, Olsson BA, Karltun E. Effects of 34-year-old Pinus taeda and Eucalyptus grandis plantations on soil carbon and nutrient status in former miombo forest soils. Glob Ecol Conserv, 2016, 8: 190-202.

[38]

Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu S, Valentini R, Bernoux M, Saint-André L. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For Ecol Manag, 2010, 260: 1375-1388.

[39]

Henry M, Tittonell P, Manlay RJ, Bernoux M, Albrecht A, Vanlauwe B. Biodiversity, carbon stocks and sequestration potential in aboveground biomass in smallholder farming systems of western Kenya. Agric Ecosyst Environ, 2009, 129: 238-252.

[40]

Houghton RA. Balancing the global carbon budget. Annu Rev Earth Planet Sci, 2007, 35: 313-347.

[41]

Jagodziński AM, Dyderski MK, Gęsikiewicz K, Horodecki P, Cysewska A, Wierczyńska S, Maciejczyk K. How do tree stand parameters affect young Scots pine biomass? Allometric equations and biomass conversion and expansion factors. For Ecol Manag, 2018, 409: 74-83.

[42]

Jagodziński AM, Dyderski MK, Gȩsikiewicz K, Horodecki P. Tree- and stand-level biomass estimation in a Larix decidua Mill. Chronosequence. Forests, 2018

[43]

Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA. National-scale biomass estimators for United States tree species. For Sci, 2003, 49: 12-35.

[44]

Johansson T. Biomass equations for determining fractions of pendula and pubescent birches growing on abandoned farmland and some practical implications. Biomass Bioenergy, 1999, 16: 223-238.

[45]

Ketterings QM, Coe R, Van Noordwijk M, Ambagau Y, Palm CA. Reducing uncertain in the use of allometric biomass equation for predciting above-ground tree biomass in mixed secondary forests. For Ecol Manag, 2001, 146: 199-209.

[46]

Lehtonen A, Mäkipää R, Heikkinen J, Sievänen R, Liski J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For Ecol Manag, 2004, 188: 211-224.

[47]

Li HT, Han XG, Wu JG. Lack of evidence for 3/4 scaling of metabolism in terrestrial plants. J Integr Plant Biol, 2005, 47: 1173-1183.

[48]

Liepiņš J, Ivanovs J, Lazdiņš A, Jansons J, Liepiņš K. Mapping of basic density within European aspen stems in Latvia. Silva Fenn, 2017, 51: 1-9.

[49]

Loetsch F, Zohrer F, Haller KE. Forst inventory, 1973, Munich: BLV.

[50]

Lozano-García B, Parras-Alcántara L. Land use and management effects on carbon and nitrogen in Mediterranean Cambisols. Agric Ecosyst Environ, 2013, 179: 208-214.

[51]

Luo YJ, Zhang XQ, Wang XK, Ren Y. Dissecting variation in biomass conversion factors across China’s forests: implications for biomass and carbon accounting. PLoS ONE, 2014

[52]

Machado SA, Figueiredo Filho A. Dendrometria, 2006 2 Paraná: Editora UNICENTRO.

[53]

Magalhães TM (2014) Análise do Sistema de Exploração dos Recursos Florestais em Moçambique. Maputo

[54]

Magalhães TM, Mate RS. Least squares-based biomass conversion and expansion factors best estimate biomass than ratio-based ones: statistical evidences based on tropical timber species. MethodsX, 2018, 5: 30-38.

[55]

Magalhães TM, Seifert T. Tree component biomass expansion factors and root-to-shoot ratio of Lebombo ironwood: Measurement uncertainty. Carbon Balance Manag, 2015

[56]

Magalhães TM, Seifert T. Biomass modelling of Androstachys johnsonii Prain: a comparison of three methods to enforce additivity. Int J For Res, 2015, 2015: 1-17.

[57]

Makungwa SD, Chittock A, Skole DL, Kanyama-Phiri GY, Woodhouse IH. Allometry for biomass estimation in Jatropha trees planted as boundary hedge in farmers’ fields. Forests, 2013, 4: 218-233.

[58]

Marková I, Pokorný R. Allometric relationships for the estimation of dry mass of aboveground organs in young highland Norway spruce stand. Acta Univ Agric Silvic Mendelianae Brun, 2011, 59: 217-224.

[59]

Návar J. Biomass component equations for Latin American species and groups of species. Ann For Sci, 2009

[60]

Niklas KJ. Scaling the paths of resistance. New Phytol, 2006, 169: 219-222.

[61]

Nimon K, Oswald F, Roberts JK (2015) Yhat: interpreting regression effects (R Package Version 2.0-0)

[62]

Nock CA, Geihofer D, Grabner M, Baker PJ, Bunyavejchewin S, Hietz P. Wood density and its radial variation in six canopy tree species differing in shade-tolerance in western Thailand. Ann Bot, 2009, 104: 297-306.

[63]

Opik H, Rolfe S. The physiology of flowering plants, 2005 4 Cambridge: Cambridge University Press

[64]

Ouédraogo DY, Mortier F, Gourlet-Fleury S, FreyconV PN. Slow-growing species cope best with drought: evidence from long-term measurements in a tropical semi-deciduous moist forest of Central Africa. J Ecol, 2013, 101: 1459-1470.

[65]

Overman JPM, Witte HJL, Saldarriaga JG. Evaluation of regression models for above-ground biomass determination in Amazon rainforest. J Trop Ecol, 1994, 10: 207-218.

[66]

Packard GC. Is logarithmic transformation necessary in allometry?. Biol J Linn Soc, 2013, 109: 476-486.

[67]

Packard GC, Boardman TJ. Model selection and logarithmic transformation in allometric analysis. Physiol Biochem Zool, 2008, 81: 496-507.

[68]

Pajtík J, Konôpka B, Lukac M. Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. For Ecol Manag, 2008, 256: 1096-1103.

[69]

Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. A large and persistent carbon sink in the World’s forests. Science, 2011, 80(333): 988-993.

[70]

Parresol BR. Additivity of nonlinear biomass equations. Can J For Res, 2001, 31: 865-878.

[71]

Parresol BR. Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci, 1999, 45: 573-593.

[72]

Paul KI, Larmour J, Specht A, Zerihun A, Ritson P, Roxburgh SH, Sochacki S, Lewis T, Barton CVM, England JR, Battaglia M, O’Grady A, Pinkard E, Applegate G, Jonson J, Brooksbank K, Sudmeyer R, Wildy D, Montagu KD, Bradford M, Butler D, Hobbs T. Testing the generality of below-ground biomass allometry across plant functional types. For Ecol Manag, 2019, 432: 102-114.

[73]

Paul KI, Roxburgh SH, England JR, Ritson P, Hobbs T, Brooksbank K, Raison RJ, Larmour JS, Murphy S, Norris J, Neumann C, Lewis T, Jonson J, Carter JL, McArthur G, Barton C, Rose B. Development and testing of allometric equations for estimating above-ground biomass of mixed-species environmental plantings. For Ecol Manag, 2013, 310: 483-494.

[74]

Paul KI, Roxburgh SH, Ritson P, Brooksbank K, England JR, Larmour JS, Raison RJ, Peck A, Wildy DT, Sudmeyer RA, Giles R, Carter J, Bennett R, Mendham DS, Huxtable D, Bartle JR. Testing allometric equations for prediction of above-ground biomass of mallee eucalypts in southern Australia. For Ecol Manag, 2013, 310: 1005-1015.

[75]

Peltier R, Forkong CN, Manlay R, Henry M, Morillon V. Évaluation du stock de carbone et de la productivité en bois d’un parc à karités du Nord-Cameroun. Bois forêts des Trop, 2007, 294: 39-50.

[76]

Picard N (2012) Manual for building tree volume and biomass allometric equations. FAO, Rome

[77]

Pilli R, Anfodillo T, Carrer M. Towards a functional and simplified allometry for estimating forest biomass. For Ecol Manag, 2006, 237: 583-593.

[78]

Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Willigen B Van (2019) NLME: linear and nonlinear mixed effects models. R package version 3.1-142. R Found. Stat. Comput. Vienna 335.

[79]

Porté A, Trichet P, Bert D, Loustau D. Allometric relationships for branch and tree woody biomass of Maritime pine (Pinus pinaster Aït.). For Ecol Manag, 2002, 158: 71-83.

[80]

R Core Team (2020) A language and environment for statistical computing

[81]

Ramananantoandro T, Ramanakoto MF, Rajoelison GL, Randriamboavonjy JC, Rafidimanantsoa HP. Influence of tree species, tree diameter and soil types on wood density and its radial variation in a mid-altitude rainforest in Madagascar. Ann For Sci, 2016, 73: 1113-1124.

[82]

Ribeiro NS, Syampungani S, Matakala NM, Nangoma D, Ribeiro-Barros AI. Jacob-Lopes E, Zepka LQ. Miombo woodlands research towards the sustainable use of ecosystem services in southern Africa. Renewable resources and biorefineries, 2015, London: IntechOpen 475 491

[83]

Salis SM, Assis MA, Mattos PP, Pião ACS. Estimating the aboveground biomass and wood volume of savanna woodlands in Brazil’s Pantanal wetlands based on allometric correlations. For Ecol Manag, 2006, 228: 61-68.

[84]

Sanquetta CR, Corte AP, da Silva F. Biomass expansion factor and root-to-shoot ratio for Pinus in Brazil. Carbon Balance Manag, 2011, 6: 6.

[85]

Sanquetta CR, Watzlawick LF, Côrte APD, Fernandes LA. Inventários florestais: planejamento e execução, 2006, Curitiba: Multi-Graphic Gráfica e Editora.

[86]

Schepaschenko D, Moltchanova E, Shvidenko A, Blyshchyk V, Dmitriev E, Martynenko O, See L, Kraxner F. Improved estimates of biomass expansion factors for Russian forests. Forests, 2018, 9: 1-23.

[87]

Schroeder P, Brown S, Mo J, Birdsey R, Cieszewski C. Biomass estimation for temperate broadleaf forests of the United States using inventory data. For Scten, 1997, 43: 424-434.

[88]

Sileshi GW. A critical review of forest biomass estimation models, common mistakes and corrective measures. For Ecol Manag, 2014, 329: 237-254.

[89]

Soares P, Tomé M, Skovsgaard JP, Vanclay JK. Evaluating a growth model for forest management using continuous forest inventory data. For Ecol Manag, 1995, 71: 251-265.

[90]

Spiess A-N, Neumeyer N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach. BMC Pharmacol, 2010, 10: 6.

[91]

Ter-Mikaelian MT, Korzukhin MD. Biomass equations for sixty-five North American tree species. For Ecol Manag, 1997, 97: 1-24.

[92]

Trubat R, Cortina J, Vilagrosa A. Root architecture and hydraulic conductance in nutrient deprived Pistacia lentiscus L. seedlings. Oecologia, 2012, 170: 899-908.

[93]

Vahedi AA, Mataji A, Babayi-Kafaki S, Eshaghi-Rad J, Hodjati SM, Djomo A. Allometric equations for predicting aboveground biomass of beech-hornbeam stands in the Hyrcanian forests of Iran. J For Sci, 2014, 60: 236-247.

[94]

van Laar A, Akça A. Forest mensuration, 2007, Dordrecht: Springer

[95]

Vanclay JK, Skovsgaard JP. Evaluating forest growth models. Ecol Modell, 1997, 98: 1-12.

[96]

Vargas-Larreta B, López-Sánchez CA, Corral-Rivas JJ, López-Martínez JO, Aguirre-Calderón CG, Álvarez-González JG. Allometric equations for estimating biomass and carbon stocks in the temperate forests of North-Western Mexico. Forests, 2017, 8: 1-20.

[97]

Vejpustková M, Zahradník D, Čihák T, Šrámek V. Models for predicting aboveground biomass of European beech (Fagus sylvatica L.) in the Czech Republic. J For Sci, 2015, 61: 45-54.

[98]

Vieilledent G, Vaudry R, Andriamanohisoa SFD, Rakotonarivo OS, Randrianasolo HZ, Razafindrabe HN, Rakotoarivony CB, Ebeling J, Rasamoelina M. A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecol Appl, 2012, 22: 572-583.

[99]

von Gadow K, Hui G. Modelling forest development, 1999, Dordrecht: Kluwer

[100]

West GB, Brown JH, Enquist BJ. A general model for the structure and allometry of plant vascular systems. Nature, 1999, 400: 664-667.

[101]

Xiang WH, Liu SH, Deng XW, Shen AH, Lei XD, Tian DL, Zhao MF, Peng CH. General allometric equations and biomass allocation of Pinus massoniana trees on a regional scale in southern China. Ecol Res, 2011, 26: 697-711.

[102]

Yeboah D, Burton AJ, Storer AJ, Opuni-Frimpong E. Variation in wood density and carbon content of tropical plantation tree species from Ghana. New For, 2014, 45: 35-52.

[103]

Zapata-Cuartas M, Sierra CA, Alleman L. Probability distribution of allometric coefficients and Bayesian estimation of aboveground tree biomass. For Ecol Manag, 2012, 277: 173-179.

[104]

Zhang H, Song TQ, Wang KL, Wang GX, Liao JX, Xu GH, Zeng FP. Biogeographical patterns of forest biomass allocation vary by climate, soil and forest characteristics in China. Environ Res Lett, 2015

[105]

Zianis D, Mencuccini M. On simplifying allometric analyses of forest biomass. For Ecol Manag, 2004, 187: 311-332.

[106]

Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs 4. 64p

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/