Stem taper functions for Betula platyphylla in the Daxing’an Mountains, northeast China

Muhammad Khurram Shahzad , Amna Hussain , Harold E. Burkhart , Fengri Li , Lichun Jiang

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (2) : 529 -541.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (2) : 529 -541. DOI: 10.1007/s11676-020-01152-4
Original Paper

Stem taper functions for Betula platyphylla in the Daxing’an Mountains, northeast China

Author information +
History +
PDF

Abstract

Accurate prediction of stem diameter is an important prerequisite of forest management. In this study, an appropriate stem taper function was developed for upper stem diameter estimation of white birch (Betula platyphylla Sukaczev) in ten sub-regions of the Daxing’an Mountains, northeast China. Three commonly used taper functions were assessed using a diameter and height dataset comprising 1344 trees. A first-order continuous-time error structure accounted for the inherent autocorrelation. The segmented model of Max and Burkhart (For Sci 22:283–289, 1976. https://doi.org/10.1093/forestscience/22.3.283) and the variable exponent taper function of Kozak (For Chron 80:507–515, 2004. https://doi.org/10.5558/tfc80507-4) described the data accurately. Owing to its lower multicollinearity, the Max and Burkhart (1976) model is recommended for diameter estimation at specific heights along the stem for the ten sub-regions. After comparison, the Max and Burkhart (1976) model was refitted using nonlinear mixed-effects techniques. Mixed-effects models would be used only when additional upper stem diameter measurements are available for calibration. Differences in region-specific taper functions were indicated by the method of the non-linear extra sum of squares. Therefore, the particular taper function should be adjusted accordingly for each sub-region in the Daxing’an Mountains.

Keywords

White birch / Taper function / Multicollinearity / Autocorrelation / Nonlinear regression

Cite this article

Download citation ▾
Muhammad Khurram Shahzad, Amna Hussain, Harold E. Burkhart, Fengri Li, Lichun Jiang. Stem taper functions for Betula platyphylla in the Daxing’an Mountains, northeast China. Journal of Forestry Research, 2020, 32(2): 529-541 DOI:10.1007/s11676-020-01152-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akaike H. A new look at the statistical identification model. IEEE Trans Automat Control, 1974, 19: 716-723.

[2]

Arias-Rodil M, Diéguez-Aranda U, Rodríguez Puerta F, López-Sánchez CA, Canga Líbano E, Cámara Obregón A, Castedo-Dorado F. Modelling and localizing a stem taper function for Pinus radiata in Spain. Can J For Res, 2015, 45: 647-658.

[3]

Barrio Anta M, Diéguez-Aranda U, Castedo-Dorado F, Álvarez González JG, von Gadow K. Merchantable volume system for pedunculate oak in northwestern Spain. Ann For Sci, 2007, 64: 511-520.

[4]

Bates DM, Watts DG. Nonlinear regression analysis and its applications, 1988, New York: Wiley 365

[5]

Behre EC. Preliminary notes on studies of tree form. J For, 1923, 21: 507-511.

[6]

Belsley DA. Conditioning diagnostics: collinearity and weak data in regression, 1991, New York: Wiley 396

[7]

Berhe L, Arnoldsson G. Tree taper models for Cupressus lusitanica plantations in Ethiopia. South For, 2008, 70: 193-203.

[8]

Brooks JR, Jiang L, Ozcelik R. Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey. For Ecol Manage, 2008, 256: 147-151.

[9]

Brooks JR, Martin S, Jordan J, Sewell C (2002) Interim taper and cubic-foot volume equations for young longleaf pine plantations in southwest Georgia. In: General Technical Reports SRS–48 Asheville, NC, US Department of Agriculture, Forest Service, Southern Research Station, pp 467–470

[10]

Burger D, Shidong Z. An introductory comparison of forest ecological conditions in northeast China and Ontario, Canada. For Chron, 1988, 64: 105-115.

[11]

Burkhart HE, Avery TE, Bullock BP. Forest measurements, 2019 6 Long Grove: Waveland Press 434

[12]

Coble DW, Hilpp K. Compatible cubic-foot stem volume and upper-stem diameter equations for semi-intensive plantation grown loblolly pine trees in East Texas. South J Appl For, 2006, 30: 132-141.

[13]

Corral-Rivas JJ, Dieguez-Aranda U, Corral Rivas S, Castedo-Dorado F. A merchantable volume system for major pine species in El Salto, Durango (Mexico). For Ecol Manage, 2007, 238: 118-129.

[14]

Crecente-Campo F, Rojo Alboreca A, Diéguez-Aranda U. A merchantable volume system for Pinus sylvestris L. in the major mountain ranges of Spain. Ann For Sci, 2009, 66: 808-808.

[15]

Demaerschalk JP. Converting volume equations to compatible taper equations. For Sci, 1972, 18: 241-245.

[16]

Demaerschalk JP, Kozak A. The whole-bole system: a conditioned dual-equation system for precise prediction of tree profiles. Can J For Res, 1977, 7: 488-497.

[17]

de-Miguel S, Mehtätalo L, Shater Z, Kraid B, Pukkala T. Evaluating marginal and conditional predictions of taper models in the absence of calibration data. Can J For Res, 2012, 42: 1383-1394.

[18]

de-Miguel S, Guzmán G, Pukkala T. A comparison of fixed- and mixed-effects modeling in tree growth and yield prediction of an indigenous neotropical species (Centrolobium tomentosum) in a plantation system. For Ecol Manage, 2013, 291: 249-258.

[19]

Dieguez-Aranda U, Castedo-Dorado F, Alvarez-Gonzalez JG, Rojo A. Compatible taper function for Scots pine plantations in northwestern Spain. Can J For Res, 2006, 36: 1190-1205.

[20]

Doyog ND, Lee YJ, Lee SJ, Kang JT, Kim SY. Compatible taper and stem volume equations for Larix kaempferi (Japanese larch) species of South Korea. J Mt Sci, 2017, 14: 1341-1349.

[21]

Fan Q, Wang C, Zhang D, Zang S. Environmental influences on forest fire regime in the Greater Hinggan mountains, northeast China. Forests, 2017, 8: 1-16.

[22]

Fang Z, Bailey RL. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments. For Sci, 2001, 47: 287-300.

[23]

Fang Z, Borders BE, Bailey RL. Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors. For Sci, 2000, 46: 1-12.

[24]

Far-East-American (2012) White birch plywood. https://www.feaco.com/products/imported-hardwood-plywood/white-birch/. Accessed 25 Oct 2017

[25]

Fonweban J, Gardiner B, Macdonald E, Auty D. Taper functions for Scots pine (Pinus sylvestris L.) and sitka spruce (Picea sitchensis (Bong.) Carr.) in Northern Britain. Forestry, 2011, 84: 49-60.

[26]

Garber SM, Maguire DA. Modeling stem taper of three central Oregon species using nonlinear mixed effects models and autoregressive error structures. For Ecol Manage, 2003, 179: 507-522.

[27]

Gregoire TG, Schabenberger O, Barrett JP. Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements. Can J For Res, 1995, 25: 137-156.

[28]

Groom JD, Hann DW, Temesgen H. Evaluation of mixed-effects models for predicting Douglas-fir mortality. For Ecol Manage, 2012, 276: 139-145.

[29]

Guzmán G, Pukkala T, Palahí M, de-Miguel S. Predicting the growth and yield of Pinus radiata in Bolivia. Ann For Sci, 2012, 69: 335-343.

[30]

Gál J, Bella IE. New stem taper functions for 12 Saskatchewan timber species, Information Report (NoFC-Edmonton), 1994, Alberta: Canadian Forest Service, Northern Forestry Centre 1 25

[31]

Gómez-García E, Crecente-Campo F, Diéguez-Aranda U. Selection of mixed-effects parameters in a variable–exponent taper equation for birch trees in northwestern Spain. Ann For Sci, 2013, 70: 707-715.

[32]

Heidarsson L, Pukkala T. Taper functions for lodgepole pine (Pinus contorta) and Siberian larch (Larix sibirica) in Iceland. Icelandic Agr Sci, 2011, 24: 3-11.

[33]

Hjelm B. Stem taper equations for poplars growing on farmland in Sweden. J For Res, 2013, 24: 15-22.

[34]

Huang S, Price D, Titus S. Development of ecoregion-based height–diameter models for white spruce in boreal forests. For Ecol Manage, 2000, 129: 125-141.

[35]

Huang S, Price D, Morgan D, Peck K. Kozak's variable-exponent taper equation regionalized for white spruce in Alberta. West J App For, 2000, 15: 75-85.

[36]

Jiang L, Brooks JR, Wang J. Compatible taper and volume equations for yellow-poplar in West Virginia. For Ecol Manage, 2005, 213: 399-409.

[37]

Jiang L, Liu R. Segmented taper equations with crown ratio and stand density for Dahurian Larch (Larix gmelinii) in Northeastern China. J For Res, 2011, 22: 347.

[38]

Kozak A. A variable-exponent taper equation. Can J For Res, 1988, 18: 1363-1368.

[39]

Kozak A. Effects of multicollinearity and autocorrelation on the variable-exponent taper functions. Can J For Res, 1997, 27: 619-629.

[40]

Kozak A. My last words on taper equations. For Chron, 2004, 80: 507-515.

[41]

Kozak A, Kozak R. Does cross validation provide additional information in the evaluation of regression models?. Can J For Res, 2003, 33: 976-987.

[42]

Kozak A, Munro DD, Smith JHG. Taper functions and their application in forest inventory. For Chron, 1969, 45: 278-283.

[43]

Kozak A, Smith JHG. Standards for evaluating taper estimating systems. For Chron, 1993, 69: 438-444.

[44]

Lee WK, Biging GS, Son Y, Byun WH, Lee KH, Son YM, Seo JH. Geostatistical analysis of regional differences in stem taper form of Pinus densiflora in central Korea. Ecol Res, 2006, 21: 513-525.

[45]

Lee WK, Seo JH, Son YM, Lee KH, von Gadow K. Modeling stem profiles for Pinus densiflora in Korea. For Ecol Manage, 2003, 172: 69-77.

[46]

Li LP, Wang XP, Stefan Z, Zhang LY, Fang JY. Altitudinal patterns of stand structure and herb layer diversity of Picea schrenkiana forests in the central Tianshan Mountains, Northwest China. J Arid Land, 2011, 3: 254-260.

[47]

Li R, Weiskittel AR. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian Region. Ann For Sci, 2010, 67: 302-302.

[48]

Li R, Weiskittel A, Dick AR, Kershaw JA Jr, Seymour RS. Regional stem taper equations for eleven conifer species in the Acadian Region of North America: development and assessment. North J Appl For, 2012, 29: 5-14.

[49]

Lumbres RIC, Abino AC, Pampolina NM, Calora FG, Lee YJ. Comparison of stem taper models for the four tropical tree species in Mount Makiling, Philippines. J Mt Sci, 2016, 13: 536-545.

[50]

Martin AJ (1981) Taper and volume equations for selected Appalachian hardwood species. USDA Forest Service, Res Pap NE-490

[51]

Matte L. The taper of coniferous species with special reference to loblolly pine. For Chron, 1949, 25: 21-31.

[52]

Max TA, Burkhart HE. Segmented polynomial regression applied to taper equations. For Sci, 1976, 22: 283-289.

[53]

Meng SX, Huang S, Yang Y, Trincado G, VanderSchaaf CL. Evaluation of population-averaged and subject-specific approaches for modeling the dominant or codominant height of lodgepole pine trees. Can J For Res, 2009, 39: 1148-1158.

[54]

Myers RH. Classical and modern regression with applications, 1990 2 Belmont: Duxbury Press.

[55]

Nigh G, Smith W. Effect of climate on lodgepole pine stem taper in British Columbia, Canada. Forestry, 2012, 85: 579-587.

[56]

Osumi S. Studies on the stem form of the forest trees (1) on the relative stem form. J Jpn For Soc, 1959, 41: 471-479.

[57]

Özcelik R, Brooks JR. Compatible volume and taper models for economically important tree species of Turkey. Ann For Sci, 2012, 69: 105-118.

[58]

Özcelik R, Crecente-Campo F. Stem taper equations for estimating merchantable volume of Lebanon cedar trees in the Taurus Mountains, Southern Turkey. For Sci, 2016, 62: 78-91.

[59]

Özcelik R, Göceri MF. Compatible merchantable stem volume and taper equations for eucalyptus plantations in the Eastern Mediterranean Region of Turkey. Turk J Agri For, 2015, 39: 851-863.

[60]

Özcelik R, Brooks JR, Jiang L. Modeling stem profile of Lebanon cedar, Brutian pine, and Cilicica fir in Southern Turkey using nonlinear mixed-effects models. Eur J For Res, 2011, 130: 613-621.

[61]

Özcelik R, Karatepe Y, Gürlevik N, Cañellas I, Crecente-Campo F. Development of ecoregion-based merchantable volume systems for Pinus brutia Ten. and Pinus nigra Arnold. in southern Turkey. J For Res, 2016, 27: 101-117.

[62]

Pang L, Ma Y, Sharma PR, Rice S, Song X, Fu L. Developing an improved parameter estimation method for the segmented taper equation through combination of constrained two-dimensional optimum seeking and least square regression. Forests, 2016, 7: 1-20.

[63]

Pompa-García M, Corral-Rivas JJ, Hernández-Díaz JC, Alvarez-González JG. A system for calculating the merchantable volume of oak trees in the northwest of the state of Chihuahua. Mexico J For Res, 2009, 20(4): 293-300.

[64]

Pukkala T, Lähde E, Laiho O. Growth and yield models for uneven-sized forest stands in Finland. For Ecol Manage, 2009, 258: 207-216.

[65]

Rivas JJC, Gonzalez JGL, Gonzalez ADR, von Gadow K. Compatible height and site index models for five pine species in El Salto, Durango (Mexico). For Ecol Manage, 2004, 201: 145-160.

[66]

Rojo A, Perales X, Sanchez-Rodriguez F, Alvarez-Gonzalez JG, von Gadow K. Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain). Eur J For Res, 2005, 124: 177-186.

[67]

SAS Institute Inc. SAS/STAT® 9.2 User’s Guide, 2008, Cary: SAS Institute Inc. 2876

[68]

Sakici OE, Misir N, Yavuz H, Misir M. Stem taper functions for Abies nordmanniana subsp. bornmulleriana in Turkey. Scand J For Res, 2008, 23: 522-533.

[69]

Samuelsson F (2006) The potential for quality production in birch stands in north-eastern China using different precommercial thinning strategies (M.Sc thesis). Alnarp: SLU, Southern Swedish Forest Research Centre, p 29

[70]

Schneider R, Franceschini T, Fortin M, Saucier JP. Climate-induced changes in the stem form of 5 North American tree species. For Ecol Manage, 2018, 427: 446-455.

[71]

Schröder T, Costa EA, Valério AF, dos Santos LG. Taper equations for Pinus elliottii Engelm. in southern Paraná. Brazil For Sci, 2014, 61: 311-319.

[72]

Schwarz G. Estimating the dimension of a model. Ann Stat, 1978, 6: 461-464.

[73]

Sevillano-Marco E, Fernandez-Manso A, Castedo-Dorado F. Development and applications of a growth model for Pinus radiata D. Don plantations in El Bierzo (Spain). For Syst, 2009, 18: 64-80.

[74]

Sharma M, Zhang SY. Variable-exponent taper equations for jack pine, black spruce, and balsam fir in eastern Canada. For Ecol Manage, 2004, 198: 39-53.

[75]

Shater Z, de-Miguel S, Kraid B, Pukkala T, Palahí M. A growth and yield model for even-aged Pinus brutia Ten. stands in Syria. Ann For Sci, 2011, 68: 149-157.

[76]

Shi F, Sasa K, Koike T. Osawa A, Zyryanova O, Matsuura Y, Kajimoto T, Wein R. Characteristics of larch forests in Daxingan Mountains, northeast China. Permafrost ecosystems. Ecological studies (analysis and synthesis), 2010, Dordrecht: Springer 367 383

[77]

Subedi N, Sharma M, Parton J. Effects of sample size and tree selection criteria on the performance of taper equations. Scand J For Res, 2011, 26: 555-567.

[78]

Tang X, Pérez-Cruzado C, Fehrmann L, Álvarez-González JG, Lu Y, Kleinn C. Development of a compatible taper function and stand-level merchantable volume model for Chinese Fir plantations. PLoS ONE, 2016, 11: e0147610.

[79]

Tang C, Wang CS, Pang SJ, Zhao ZG, Guo JJ, Lei YC, Zeng J. Stem taper equations for Betula alnoides in South China. J Trop For Sci, 2017, 29: 80-92.

[80]

Teshome T. Compatible volume-taper equations for predicting merchantable volume to variable merchantable limits for Cupressus lusitanica, Ethiopia. Ethiop J Sci, 2005, 28: 15-22.

[81]

Thomas PR. Modern regression methods, 1997, New York: Wiley 515

[82]

Trincado G, Burkhart HE. A generalized approach for modeling and localizing stem profile curves. For Sci, 2006, 52: 670-682.

[83]

West PW, Ratkowsky DA, Davis AW. Problems of hypothesis testing of regressions with multiple measurements from individual sampling units. For Ecol Manage, 1984, 7: 207-224.

[84]

Xu H, Liu Y, Jiang J, Liu G, Zhao X. Progeny test of tetraploid Betula platyphylla and preliminary selection of hybrid parents. J For Res, 2016, 27: 665-674.

[85]

Xu J, Xie S, Han A, Rao R, Huang G, Chen X, Hu J, Liu Q, Yang X, Zhang L. Forest resources in China—The 9th National Forest Inventory, 2019, Beijing: National Forestry and Grassland Administration 29

[86]

Zeng W, Tomppo E, Healey SP, Gadow KV. The national forest inventory in China: history-results-international context. For ecosyst, 2015, 2: 23.

[87]

Zhang L, Peng C, Huang S, Zhou X. Development and evaluation of ecoregion-based jack pine height-diameter models for Ontario. For Chron, 2002, 78: 530-538.

[88]

Zhang WR, Sheng WT, Jiang YX, Zhou ZX, Wang XS. Classification of forest site system in China. For Res, 1992, 5: 251-262. (in Chinese)

[89]

Zheng C, Wang Y, Jia L, Mason EG, We S, Sun C, Duan J. Compatible taper-volume models of Quercus variabilis Blume forests in north China. iForest Biogeosci For, 2017, 10: 567.

[90]

Zianis D, Muukkonen P, Makipaa R, Mencuccini M. Biomass and stem volume equations for tree species in Europe. Silva Fenn Monogr, 2005, 4: 63.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/