Temporal and phenological profiles of open and dense Caatinga using remote sensing: response to precipitation and its irregularities

Janisson Batista de Jesus , Tatiana Mora Kuplich , Íkaro Daniel de Carvalho Barreto , Cristiano Niederauer da Rosa , Fernando Luis Hillebrand

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (3) : 1067 -1076.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (3) : 1067 -1076. DOI: 10.1007/s11676-020-01145-3
Original Paper

Temporal and phenological profiles of open and dense Caatinga using remote sensing: response to precipitation and its irregularities

Author information +
History +
PDF

Abstract

Caatinga is a typical biome of Brazil’s semiarid regions and subject to climate changes. Research is needed on the relation of its features to climate events. This study analyzed the influence of rainfall and its irregularities in open and dense woody Caatinga vegetation. Phenological curves were generated by means of Normalized Difference Vegetation Index (NDVI) time profiles in the Grota do Angico Conservation Unit study area in Sergipe State. Rainfall data from 2000 to 2018 were collected and phenological curves generated using various estimate methods that produced the following variables: [start of season, end of season, peak of season position, length of season, mean growing season and maximum seasonal]. Rainfall showed a standard intra-annual behavior, with inter-annual variations related to irregularities influencing Caatinga response. Dense Caatinga vegetation had higher values of NDVI in all periods, even in anomalous years compared to open Caatinga, in addition to having longer leaf coverage over the year, with an anticipated start and a more extended seasonal end. The analysis of the rainfall regime made it possible to assess its influence on the Caatinga and phenological profiles proved to be fundamental to understand periods of physiological change of open and dense Caatinga. These results indicate that dense Caatinga maintains physiological activity longer, which may be associated with greater moisture maintenance in a semiarid region. In addition, because it has a greater leaf cover for longer periods, the soil may be preserved and maintain its characteristics longer, reducing the effects of desertification. The results may be associated with the type of forest management and conservation in this region. The total or partial suppression of individual remnants of Caatinga should be avoided, since the most open areas have lower photosynthetic capacity, affected to a considerable extent from the effects of adverse climatic conditions. Additionally, open Caatinga has a reduced capacity for regenerating naturally and its use by communities in this semiarid region should be limited.

Keywords

Semiarid / Tropical dry forest / NDVI / MODIS / Phenopix

Cite this article

Download citation ▾
Janisson Batista de Jesus, Tatiana Mora Kuplich, Íkaro Daniel de Carvalho Barreto, Cristiano Niederauer da Rosa, Fernando Luis Hillebrand. Temporal and phenological profiles of open and dense Caatinga using remote sensing: response to precipitation and its irregularities. Journal of Forestry Research, 2020, 32(3): 1067-1076 DOI:10.1007/s11676-020-01145-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abade NA, Carvalho Júnior OA, Guimarães RF, Oliveira SN. Comparative analysis of MODIS time-series classification using support vector machines and methods based upon distance and similarity measures in the Brazilian Cerrado–Caatinga boundary. Remote Sens, 2015, 7(9): 12160-12191.

[2]

Adami M, Bernardes S, Egidio A, Freitas RM, Shimabukuro YE, Espírito-Santo FDB, Rudorff BFT, Anderson LO. Seasonality of vegetation types of South America depicted by moderate resolution imaging spectroradiometer (MODIS) time series. Int J Appl Earth Obs, 2018, 69: 148-163.

[3]

Adole T, Dash J, Atkinson PM. Characterising the land surface phenology of Africa using 500 mM ODIS EVI. Appl Geogr, 2018, 90: 187-199.

[4]

Barbosa HA, Huete AR, Baethgen WE. A 20-year study of NDVI variability over the Northeast Region of Brazil. J Arid Environ, 2006, 67(2): 288-307.

[5]

Barbosa HA, Kumar TL. Influence of rainfall variability on the vegetation dynamics over Northeastern Brazil. J Arid Environ, 2016, 124: 377-387.

[6]

Barbosa HA, Kumar TL, Paredes F, Elliot S, Ayuga JG. Assessment of Caatinga response to drought using Meteosat-SEVIRI normalized difference vegetation index (2008–2016). ISPRS Photogramm Remote Sens, 2019, 148: 235-252.

[7]

Bombardi RJ, Carvalho LMV. Práticas simples em análises climatológicas: uma revisão em análises e comparações de dados com tendências. Revista Brasileira de Meteorologia, 2017, 32(3): 311-320.

[8]

Chakraborty A, Seshasai MVR, Reddy CS, Dadhwal VK. Persistent negative changes in seasonal greenness over different forest types of India using MODIS time series NDVI data (2001–2014). Ecol Indic, 2018, 85: 887-903.

[9]

Chaves IB, Lopes VL, Folliott PF. Uma classificação morfo-estrutural para descrição e avaliação da biomassa da vegetação da caatinga. Revista Caatinga, 2008, 21(2): 204-213.

[10]

Cole MM. Cerrado, Caatinga and pantanal: the distribution and origin of the savanna vegetation of Brazil. The Geogr J, 1960, 126(2): 168-179.

[11]

Embrapa (2018) SATVeg. Sistema de Análise Temporal da Vegetação. https://www.satveg.cnptia.embrapa.br/satveg/login.html [Accessed 10 Dec 2018]

[12]

Erasmi S, Schucknecht A, Barbosa MP, Matschullat J. Vegetation greenness in Northeastern Brazil and its relation to ENSO warm events. Remote Sens, 2014, 6(4): 3041-3058.

[13]

ESA (2019) Sentinel Online. https://sentinel.esa.int/web/sentinel/sentinel-data-access Accessed 16 Jan 2019

[14]

FAO (2012) Food and Agriculture Organization of the United Nations. Global ecological zones for FAO forest reporting:2010 Update. Forest Resources Assessment Working: Rome, p. 52

[15]

Filippa G, Cremosene E, Migliavacca M, Galvagno M, Forkel M, Wingate L, Tomelleri E, Cella UM, Richardson AD. Phenopix: A R package for image-based vegetation phenology. Agr Forest Meteoro, 2016, 220: 141-150.

[16]

Formigoni MH, Xavier AC, Lima JSS. Análise temporal da vegetação na região do nordeste através de dados EVI do MODIS. Ciência Florestal, 2011, 21(1): 1-8.

[17]

Freire JLM, Lima JTA, Cavalcanti EP. Análise de Aspectos Meteorológicos sobre o Nordeste do Brasil em Anos de El Niño e La Niña. Revista Brasileira de Geografia Física, 2011, 3: 429-444.

[18]

Guimarães SO, Costa AA, Vasconcelos Júnior FC, Silva EM, Sales DC, Araújo Júnior LM, Souza SG. Projeções de Mudanças Climáticas sobre o Nordeste Brasileiro dos Modelos do CMIP5 e do CORDEX. Revista Brasileira de Meteorologia, 2016, 31(3): 337-365.

[19]

Gurgel HC, Ferreira NJ. Annual and interannual variability of NDVI in Brazil and its connections with climate. Int J Remote Sens, 2003, 24: 3595-3609.

[20]

Hmimina G, Dufrêne E, Pontallier J-Y, Delpierre N, Aubinet M, Caquet B, Grandcourt A, Burban B, Flechard C, Granier A, Gross P, Heinesch B, Longdoz B, Moureaux C, Ourcival J-M, Rambal S, André LS, Soudani K. Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: an investigation using ground-based NDVI measurements. Remote Sens Environ, 2013, 132: 145-158.

[21]

INPE (2018) Series View. https://www.dsr.inpe.br/laf/series [Accessed 10 Dec 2018]

[22]

Ivits E, Cherlet M, Tóth G, Sommer S, Mehl W, Vogt J, Micale F. Combining satellite derived phenology with climate data for climate change impact assessment. Glob Planet Change, 2012, 88–89: 85-97.

[23]

Kousky VE, Cavalcanti IFA. Eventos Oscilação Sul/El Niño: característica evolução e anomalias de precipitação. Ciência e Cultura, 1984, 36(11): 1888-1899.

[24]

Lundgren WJC, Sousa IF, Lundgren GA. Krigagem na construção de mapa pluviométrico do Estado de Sergipe. Revista Brasileira de Geografia Física, 2017, 10(1): 13-22.

[25]

Lundgren WJC, Sousa IF, Lundgren GA. Estimativa pluviométrica através das técnicas da krigagem e cokrigagem no Estado de Sergipe. Revista Brasileira de Geografia Física, 2017, 10(3): 854-865.

[26]

NOAA (2019) National Weather Service. Center for Weather and Climate Prediction. El Niño/Southern Oscillation (ENSO). https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php [Accessed 10 Jan 2019]

[27]

Nóbrega RS, Santiago GACF. Tendências do controle climático oceânico sob a variabilidade temporal da precipitação no Nordeste do Brasil. Revista de Geografía Norte Grande, 2016, 63: 9-26.

[28]

Pastor-Guzman J, Dash J, Atkinson PM. Remote sensing of mangrove forest phenology and its environmental drivers. Remote Sens Environ, 2018, 205: 71-84.

[29]

Pereira ERR, Freitas JC, Andrade ARS, Souza VG. Variabilidade do número de dias chuvosos no estado de Sergipe-SE. Revista Brasileira de Tecnologia Aplicada nas Ciências Agrárias, 2011, 4(1): 45-65.

[30]

Qin YW, Xiao XM, Dong JW, Zhou YT, Wang J, Doughty RB, Chen Y, Zou ZH, Moore B III. Annual dynamics of forest areas in South America during 2007–2010 at 50m spatial resolution. Remote Sens Environ, 2017, 201: 73-87.

[31]

Redo D, Aide TM, Clark ML. Vegetation change in Brazil’s dryland ecoregions and the relationship to crop production and environmental factors: Cerrado, Caatinga, and Mato Grosso, 2001–2009. J Land Use Sci, 2013, 8(2): 123-153.

[32]

Ribeiro AS, Mello AA (2007) Diagnóstico da biota. In: Ribeiro, A.S. (coord.). Estudos para criação do Monumento Natural Grota do Angico. Sergipe: Governo de Sergipe, Secretaria de Estado do Meio Ambiente e dos Recursos Hídricos, p 12‒20

[33]

Salimon C, Anderson L. How strong is the relationship between rainfall variability and Caatinga productivity? A case study under a changing climate. Ann Brazilian Acad Sci, 2018, 90(2): 2121-2127.

[34]

Santos CAC, Brito JIB. Análise dos índices de extremos para o semi-árido do Brasil e suas relações com TSM e IVDN. Revista Brasileira de Meteorologia, 2007, 22(3): 303-312.

[35]

Santos DM, Silva KA, Albuquerque UP, Santos JMFF, Lopes CGR, Araújo EL. Can spatial variation and inter-annual variation in precipitation explain the seed density and species richness of the germinable soil seed bank in a tropical dry forest in north-eastern Brazil?. Flora, 2013, 208: 445-452.

[36]

Santos MG, Oliveira MT, Figueiredo KV, Falcão HM, Arruda ECP, Almeida-Cortez J, Sampaio EVSB, Ometto JPHB, Menezes RSC, Oliveira AFM, Pompelli MF, Antonino ACD. Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes?. Theor Exp Plant Phys, 2014, 26: 83-99.

[37]

Schucknecht A, Erasmi S, Niemeyer I, Matschullat J. Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series. Eur J Remote Sens, 2013, 46: 40-59.

[38]

Schulz C, Koch R, Cierjacks A, Kleinschmit B. Land change and loss of landscape diversity at the Caatinga phytogeographical domain e Analysis of pattern-process relationships with MODIS land cover products (2001–2012). J Arid Environ, 2017, 136: 54-74.

[39]

Serviço Florestal Brasileiro (2018) Inventário Florestal Nacional. Sergipe: principais resultados. MMA: Brasília, p87.

[40]

Silva VPR, Pereira ERR, Almeida RSR. Estudo da variabilidade anual e intra-anual da precipitação na região Nordeste do Brasil. Revista Brasileira de Meteorologia, 2012, 27(2): 163-172.

[41]

Silva VPR, Pereira ERR, Azevedo PV, Souza FAZ, Souza IF. Análise da pluviometria e dias chuvosos na região Nordeste do Brasil. Revista Brasileira de Engenharia Agrícola e Ambiental, 2011, 15(2): 131-138.

[42]

Sousa IF, Aguiar Netto AO, Silva BB. Balanço de radiação e energia no perímetro irrigado Califórnia-SE mediante imagens orbitais. Revista Brasileira de Geografia Física, 2014, 7(6): 1165-1172.

[43]

Testa S, Soudani K, Boschetti L, Mondino EB. MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests. Int J Appl Earth Obs, 2018, 64: 132-144.

[44]

Zheng C, Tang XG, Gu Q, Wang TX, Wei J, Song LS, Ma MG. Climatic anomaly and its impact on vegetation phenology, carbon sequestration and water-use efficiency at a humid temperate forest. J Hydrol, 2018, 565: 150-159.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/