Buffered microclimate determines the presence of Salamandra corsica

Daniel Escoriza , Axel Hernandez

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (3) : 1089 -1093.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (3) : 1089 -1093. DOI: 10.1007/s11676-020-01142-6
Original Paper

Buffered microclimate determines the presence of Salamandra corsica

Author information +
History +
PDF

Abstract

Numerous amphibian species occupy microhabitats with buffered thermal and moisture conditions, typically under forest canopies. Here, we assessed whether the insular endemic Salamandra corsica also uses this type of habitat, which could have important implications for its conservation. We used data loggers to record the air temperature and air humidity at 4 h intervals over a period of 2 years, at 13 stations with a confirmed presence of S. corsica. These data were compared with those recorded at Corsican weather stations and those generated by a climate model (WorldClim 2). The weather station data showed significant deviations from the probe data, by an average of − 1.26 °C (minimum temperature), + 2.61 °C (maximum temperature), and − 0.04% (relative humidity). Similarly, the WorldClim 2 data showed significant deviations from the probe data, by an average of − 2.49 °C (minimum temperature) and + 1.69 °C (maximum temperature). These discrepancies reflect the use of densely vegetated and topographically complex habitats by S. corsica, which reduce temperature fluctuations. Overall, our results highlight the importance of natural vegetal cover in the conservation of populations of this endemic salamander.

Keywords

Fire salamander / Island endemic / Microclimate / Probe / Threatened species

Cite this article

Download citation ▾
Daniel Escoriza, Axel Hernandez. Buffered microclimate determines the presence of Salamandra corsica. Journal of Forestry Research, 2020, 32(3): 1089-1093 DOI:10.1007/s11676-020-01142-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson MJ. A new method for non-parametric multivariate analysis of variance. Aust Ecol, 2001, 26: 32-46.

[2]

Anderson JM, Ingram JSI. Tropical soil biology and fertility, 1989, Wallingford: CAB International 265

[3]

Anderson PD, Larson DJ, Chan SS. Riparian buffer and density management influences on microclimate of young headwater forests of western Oregon. For Sci, 2007, 53: 254-269.

[4]

Caldonazzi M, Tripepi S. Sindaco R, Doria G, Razzetti E, Bernini F. Salamandra salamandra. Atlante degli Anfibi e Rettili d’Italia, 2006, Firenze: Polistampa 202 207

[5]

Crawford JA, Semlitsch RD. Estimation of core terrestrial habitat for stream-breeding salamanders and delineation of riparian buffers for protection of biodiversity. Conserv Biol, 2007, 21: 152-158.

[6]

Delaugerre M, Cheylan M. Atlas de Repartition des Batraciens et Reptiles de Corse, 1992, Montpellier: Parc Naturel Regional de Corse-Ecole Pratique des Hautes Études 128

[7]

Escoriza D, Ben Hassine J. Microclimatic variation in multiple Salamandra algira populations along an altitudinal gradient: phenology and reproductive strategies. Acta Herpetol, 2014, 9: 33-41.

[8]

Escoriza D, Hernandez A. Using hierarchical spatial models to assess the occurrence of an island endemism: the case of Salamandra corsica. Ecol Process, 2019, 8: 15.

[9]

Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol, 2017, 37: 4302-4315.

[10]

Frey SJ, Hadley AS, Betts MG. Microclimate predicts within-season distribution dynamics of montane forest birds. Divers Distrib, 2016, 22: 944-959.

[11]

Gade MR, Peterman WE. Multiple environmental gradients influence the distribution and abundance of a key forest-health indicator species in the Southern Appalachian Mountains, USA. Landsc Ecol, 2019, 34: 569-582.

[12]

Grant EH, Brand AB, De Wekker SF, Lee TR, Wofford JE. Evidence that climate sets the lower elevation range limit in a high-elevation endemic salamander. Ecol Evol, 2018, 8: 7553-7562.

[13]

Grover MC. Determinants of salamander distributions along moisture gradients. Copeia, 2000, 2000: 156-168.

[14]

Guisan A, Hofer U. Predicting reptile distributions at the mesoscale: relation to climate and topography. J Biogeogr, 2003, 30: 1233-1243.

[15]

Hutchison VH. Critical thermal maxima in salamanders. Physiol Zool, 1961, 34: 92-125.

[16]

Lanza B, Andreone F, Bologna MA, Corti C, Razzetti E. Fauna d’Italia–Amphibia XLII, 2007, Bologna: Calderini 537

[17]

Pyron RA, Burbrink FT. Trait-dependent diversification and the impact of palaeontological data on evolutionary hypothesis testing in New World ratsnakes (tribe Lampropeltini). J Evol Biol, 2012, 25: 497-508.

[18]

R Core Development Team (2019) R-3.6.1 for Windows (32/64 bit). https://cran.r-project.org/bin/windows/base/. Accessed 12 Apr 2019

[19]

Rome S, Giorgetti JP. La montagne corse et ses caractéristiques climatiques. La Météorologie, 2007, 59: 39-50.

[20]

Scheffers BR, Evans TA, Williams SE, Edwards DP. Microhabitats in the tropics buffer temperature in a globally coherent manner. Biol Lett, 2014, 10: 20140819.

[21]

Shoo LP, Storlie C, Vanderwal J, Little J, Williams SE. Targeted protection and restoration to conserve tropical biodiversity in a warming world. Glob Change Biol, 2011, 17: 186-193.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/